Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7372
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:56:40Z-
dc.date.available2021-09-11T15:56:40Z-
dc.date.issued2010en_US
dc.identifier.issn0957-4174-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.06.022-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7372-
dc.description.abstractAn approach based on the consideration that electrocardiogram (ECG) signals are chaotic signals was presented for automated diagnosis of electrocardiographic changes This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Recurrent neural network (RNN) was implemented and used as basis for detection of variabilities of ECG signals. Four types of ECG beats (normal beat, congestive heart failure beat. ventricular tachyarrhythmia beat, atrial fibrillation beat) obtained from the PhysioBank database were classified. Decision making was performed in two stages: computing features which were then input into the RNN and classification using the RNN trained with the Levenberg-Marquardt algorithm. The research demonstrated that the Lyapunov exponents are the features which are well representing the ECG signals and the RNN trained on these features achieved high classification accuracies (C) 2009 Elsevier Ltd All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRecurrent neural networks (RNNs)en_US
dc.subjectLyapunov exponentsen_US
dc.subjectElectrocardiogram (ECG) signalsen_US
dc.subjectChaotic signalen_US
dc.titleRecurrent neural networks employing Lyapunov exponents for analysis of ECG signalsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume37en_US
dc.identifier.issue2en_US
dc.identifier.startpage1192en_US
dc.identifier.endpage1199en_US
dc.identifier.wosWOS:000272432300035en_US
dc.identifier.scopus2-s2.0-71749119944en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.eswa.2009.06.022-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

92
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

76
checked on Nov 2, 2024

Page view(s)

54
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.