Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7374
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİlbay, Konuralp-
dc.contributor.authorÜbeyli, Elif Derya-
dc.contributor.authorİlbay, Gül-
dc.contributor.authorBudak, Faik-
dc.date.accessioned2021-09-11T15:56:40Z-
dc.date.available2021-09-11T15:56:40Z-
dc.date.issued2010-
dc.identifier.issn0148-5598-
dc.identifier.issn1573-689X-
dc.identifier.urihttps://doi.org/10.1007/s10916-009-9277-6-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7374-
dc.description.abstractThis paper presents the use of recurrent neural networks (RNNs) for diagnosis of carpal tunnel syndrome (CTS) (normal, right CTS, left CTS, bilateral CTS). The RNN is trained with the Levenberg-Marquardt algorithm. The RNN is trained on the features of CTS (right median motor latency, left median motor latency, right median sensory latency, left median sensory latency). The multilayer perceptron neural network (MLPNN) is also implemented for comparison the performance of the classifiers on the same diagnosis problem. The total classification accuracy of the RNN is significantly high (94.80%). The obtained results confirmed the validity of the RNNs to help in clinical decision-making.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Medical Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCarpal tunnel syndromeen_US
dc.subjectMedian motor latencyen_US
dc.subjectMedian sensory latencyen_US
dc.subjectClasification accuracyen_US
dc.subjectRecurrent neural networken_US
dc.titleRecurrent Neural Networks for Diagnosis of Carpal Tunnel Syndrome Using Electrophysiologic Findingsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume34en_US
dc.identifier.issue4en_US
dc.identifier.startpage643en_US
dc.identifier.endpage650en_US
dc.identifier.wosWOS:000280071200023-
dc.identifier.scopus2-s2.0-77956062853-
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid20703918-
dc.identifier.doi10.1007/s10916-009-9277-6-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Dec 21, 2024

Page view(s)

58
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.