Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7375
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Übeyli, Elif Derya | - |
dc.date.accessioned | 2021-09-11T15:56:41Z | - |
dc.date.available | 2021-09-11T15:56:41Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.issn | 0010-4825 | - |
dc.identifier.uri | https://doi.org/10.1016/j.compbiomed.2008.01.002 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7375 | - |
dc.description.abstract | The aim of this study is to evaluate the diagnostic accuracy of the recurrent neural networks (RNNs) with composite features (wavelet coefficients and Lyapunov exponents) on the electrocardiogram (ECG) signals. Two types of ECG beats (normal and partial epilepsy) were obtained from the MIT-BIH database. The multilayer perceptron neural networks (MLPNNs) were also tested and benchmarked for their performance on the classification of the ECG signals. Decision making was performed in two stages: computing composite features which were then input into the classifiers and classification using the classifiers trained with the Levenberg-Marquarch algorithm. The research demonstrated that the wavelet coefficients and the Lyapunov exponents are the features which well represent the ECG signals and the RNN trained on these features achieved high classification accuracies. (C) 2008 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-Elsevier Science Ltd | en_US |
dc.relation.ispartof | Computers In Biology And Medicine | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | recurrent neural networks (RNNs) | en_US |
dc.subject | Levenberg-Marquardt algorithm | en_US |
dc.subject | composite features | en_US |
dc.subject | wavelet coefficients | en_US |
dc.subject | Lyapunov exponents | en_US |
dc.subject | electrocardiogram (ECG) signals | en_US |
dc.title | Recurrent neural networks with composite features for detection of electrocardiographic changes in partial epileptic patients | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 38 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 401 | en_US |
dc.identifier.endpage | 410 | en_US |
dc.identifier.wos | WOS:000254733000012 | en_US |
dc.identifier.scopus | 2-s2.0-39549123616 | en_US |
dc.institutionauthor | Übeyli, Elif Derya | - |
dc.identifier.pmid | 18275945 | en_US |
dc.identifier.doi | 10.1016/j.compbiomed.2008.01.002 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
14
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
14
checked on Nov 2, 2024
Page view(s)
44
checked on Nov 11, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.