Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7388
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZarinbal, M.-
dc.contributor.authorZarandi, Mohammad Hossein Fazel-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:56:45Z-
dc.date.available2021-09-11T15:56:45Z-
dc.date.issued2014en_US
dc.identifier.issn0020-0255-
dc.identifier.issn1872-6291-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2013.11.004-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7388-
dc.description.abstractPattern recognition is a collection of computer techniques to classify various observations into different clusters of similar attributes in either supervised or unsupervised manner. Application of fuzzy logic to unsupervised classification or clustering methods has resulted in many wildly used techniques such as fuzzy c-means (FCM) method. However, when the observations are too noisy, the performance of such methods might be reduced. Thus, in this paper, a new fuzzy clustering method based on FCM is presented and the relative entropy is added to its objective function as a regularization function to maximize the dissimilarity between clusters. Several examples are provided to examine the performance of the proposed clustering method. The obtained results show that the proposed method has a very good ability in detecting noises and assignment of suitable membership degrees to the observations. (C) 2013 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Science Incen_US
dc.relation.ispartofInformation Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFuzzy clusteringen_US
dc.subjectRelative entropyen_US
dc.subjectFuzzy c-meansen_US
dc.subjectRelative entropy fuzzy c-means clusteringen_US
dc.titleRelative Entropy Fuzzy C-Means Clusteringen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume260en_US
dc.identifier.startpage74en_US
dc.identifier.endpage97en_US
dc.identifier.wosWOS:000330823800006en_US
dc.identifier.scopus2-s2.0-84891737713en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.ins.2013.11.004-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

72
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

81
checked on Dec 21, 2024

Page view(s)

60
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.