Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7405
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTürkşen, İsmail Burhan-
dc.date.accessioned2021-09-11T15:56:50Z-
dc.date.available2021-09-11T15:56:50Z-
dc.date.issued2009en_US
dc.identifier.issn0142-3312-
dc.identifier.issn1477-0369-
dc.identifier.urihttps://doi.org/10.1177/0142331208090627-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7405-
dc.description.abstractFuzzy system modelling (FSM) is one of the most prominent tools that can be used to identify the behaviour of highly non-linear systems with uncertainty. In the past, FSM techniques utilized Type 1 fuzzy sets in order to capture the uncertainty in the system. However, since Type I fuzzy sets express the belongingness of a crisp value x' of an input variable x in a fuzzy set A by a crisp membership value mu(A)(x'), they cannot fully capture the uncertainties associated with higher-order imprecisions in identifying membership functions. In the future, we are likely to observe higher types of fuzzy sets, such as Type 2 fuzzy sets. The use of Type 2 fuzzy sets and linguistic logical connectives has drawn a considerable amount of attention in the realm of FSM in the last two decades. In this paper, we first review Type I fuzzy system models known as Zadeh, Takagi-Sugeno and Turksen models; then we review potentially future realizations of Type 2 fuzzy systems again under the headings of Zadeh, Takagi-Sugeno and Turksen fuzzy system models, in contrast to Type I fuzzy system models. Zadeh's and Takagi-Sugeno's models are essentially fuzzy rule base (FRB) models, whereas Turksen's models are essentially fuzzy function (FF) models. Type 2 fuzzy system models have a higher predictive power. One of the essential problems of Type 2 fuzzy system models is computational complexity. In data-driven FSM methods discussed here, a fuzzy C-means (FCM) clustering algorithm is used in order to identify the system structure, ie, either the number of fuzzy rules or alternately the number of FFs.en_US
dc.language.isoenen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofTransactions of The Institute of Measurement And Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfuzzy clusteringen_US
dc.subjectfuzzy functionsen_US
dc.subjectfuzzy system modelsen_US
dc.subjectType 1 and 2 fuzzy system modelsen_US
dc.titleReview of fuzzy system models with an emphasis on fuzzy functionsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume31en_US
dc.identifier.issue1en_US
dc.identifier.startpage7en_US
dc.identifier.endpage31en_US
dc.identifier.wosWOS:000263421300002en_US
dc.identifier.scopus2-s2.0-58349116891en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1177/0142331208090627-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Nov 2, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 2, 2024

Page view(s)

58
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.