Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7411
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAksoylu, Burak-
dc.contributor.authorYeter, Zuhal-
dc.date.accessioned2021-09-11T15:56:52Z-
dc.date.available2021-09-11T15:56:52Z-
dc.date.issued2011en_US
dc.identifier.issn1070-5325-
dc.identifier.issn1099-1506-
dc.identifier.urihttps://doi.org/10.1002/nla.761-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7411-
dc.description.abstractWe study the high-contrast biharmonic plate equation with Hsieh-Clough-Tocher discretization. We construct a preconditioner that is robust with respect to contrast size and mesh size simultaneously based on the preconditioner proposed by Aksoylu et al. (Comput. Vis. Sci. 2008; 11: 319-331). By extending the devised singular perturbation analysis from linear finite element discretization to the above discretization, we prove and numerically demonstrate the robustness of the preconditioner. Therefore, we accomplish a desirable preconditioning design goal by using the same family of preconditioners to solve the elliptic family of PDEs with varying discretizations. We also present a strategy on how to generalize the proposed preconditioner to cover high-contrast elliptic PDEs of order 2k, k>2. Moreover, we prove a fundamental qualitative property of the solution to the high-contrast biharmonic plate equation. Namely, the solution over the highly bending island becomes a linear polynomial asymptotically. The effectiveness of our preconditioner is largely due to the integration of this qualitative understanding of the underlying PDE into its construction. Copyright (C) 2010 John Wiley & Sons, Ltd.en_US
dc.description.sponsorshipNSFNational Science Foundation (NSF) [DMS-1016190]; Direct For Mathematical & Physical ScienNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS) [1016190] Funding Source: National Science Foundationen_US
dc.description.sponsorshipThis work is supported by NSF under grant number DMS-1016190.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofNumerical Linear Algebra With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectbiharmonic equationen_US
dc.subjectplate equationen_US
dc.subjectfourth-order elliptic PDEen_US
dc.subjectSchur complementen_US
dc.subjectlow-rank perturbationen_US
dc.subjectsingular perturbation analysisen_US
dc.subjecthigh-contrast coefficientsen_US
dc.subjectdiscontinuous coefficientsen_US
dc.subjectheterogeneityen_US
dc.titleRobust Multigrid Preconditioners for the High-Contrast Biharmonic Plate Equationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume18en_US
dc.identifier.issue4en_US
dc.identifier.startpage733en_US
dc.identifier.endpage750en_US
dc.authorid0000-0002-7244-3340-
dc.identifier.wosWOS:000292548100008en_US
dc.identifier.scopus2-s2.0-79960145568en_US
dc.institutionauthorAksoylu, Burak-
dc.identifier.doi10.1002/nla.761-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

2
checked on Dec 21, 2024

Page view(s)

62
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.