Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7485
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gürbüz, Ali Cafer | - |
dc.contributor.author | Teke, Oğuzhan | - |
dc.contributor.author | Arıkan, Orhan | - |
dc.date.accessioned | 2021-09-11T15:57:19Z | - |
dc.date.available | 2021-09-11T15:57:19Z | - |
dc.date.issued | 2013 | en_US |
dc.identifier.issn | 1017-9909 | - |
dc.identifier.issn | 1560-229X | - |
dc.identifier.uri | https://doi.org/10.1117/1.JEI.22.2.021007 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7485 | - |
dc.description.abstract | Spatial sparsity of the target space in subsurface or through-the-wall imaging applications has been successfully used within the compressive-sensing framework to decrease the data acquisition load in practical systems, while also generating high-resolution images. The developed techniques in this area mainly discretize the continuous target space into grid points and generate a dictionary of model data that is used in image-reconstructing optimization problems. However, for targets that do not coincide with the computation grid, imaging performance degrades considerably. This phenomenon is known as the off-grid problem. This paper presents a novel sparse ground-penetrating radar imaging method that is robust for off-grid targets. The proposed technique is an iterative orthogonal matching pursuit-based method that uses gradient-based steepest ascent-type iterations to locate the off-grid target. Simulations show that robust results with much smaller reconstruction errors are obtained for multiple off-grid targets compared to standard sparse reconstruction techniques. (c) 2013 SPIE and IS&T | en_US |
dc.description.sponsorship | TUBITAK within Career Program Grant Compressive Remote Sensing and ImagingTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [109E280]; TUBITAK within FP7 Marie Curie IRG Grant Compressive Data Acquisition and Processing Techniques for Sensing ApplicationsTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [PIRG04-GA-2008-239506] | en_US |
dc.description.sponsorship | This work was supported by TUBITAK within Career Program Grant Compressive Remote Sensing and Imaging, project number 109E280, and within FP7 Marie Curie IRG Grant Compressive Data Acquisition and Processing Techniques for Sensing Applications, project number PIRG04-GA-2008-239506. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Is&T & Spie | en_US |
dc.relation.ispartof | Journal of Electronic Imaging | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | Sparse Ground-Penetrating Radar Imaging Method for Off-The Target Problem | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 22 | en_US |
dc.identifier.issue | 2 | en_US |
dc.authorid | 0000-0001-8923-0299 | - |
dc.authorid | 0000-0002-3698-8888 | - |
dc.identifier.wos | WOS:000322376100008 | en_US |
dc.identifier.scopus | 2-s2.0-84892710786 | en_US |
dc.institutionauthor | Gürbüz, Ali Cafer | - |
dc.identifier.doi | 10.1117/1.JEI.22.2.021007 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
13
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
10
checked on Dec 21, 2024
Page view(s)
64
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.