Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7485
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGürbüz, Ali Cafer-
dc.contributor.authorTeke, Oğuzhan-
dc.contributor.authorArıkan, Orhan-
dc.date.accessioned2021-09-11T15:57:19Z-
dc.date.available2021-09-11T15:57:19Z-
dc.date.issued2013en_US
dc.identifier.issn1017-9909-
dc.identifier.issn1560-229X-
dc.identifier.urihttps://doi.org/10.1117/1.JEI.22.2.021007-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7485-
dc.description.abstractSpatial sparsity of the target space in subsurface or through-the-wall imaging applications has been successfully used within the compressive-sensing framework to decrease the data acquisition load in practical systems, while also generating high-resolution images. The developed techniques in this area mainly discretize the continuous target space into grid points and generate a dictionary of model data that is used in image-reconstructing optimization problems. However, for targets that do not coincide with the computation grid, imaging performance degrades considerably. This phenomenon is known as the off-grid problem. This paper presents a novel sparse ground-penetrating radar imaging method that is robust for off-grid targets. The proposed technique is an iterative orthogonal matching pursuit-based method that uses gradient-based steepest ascent-type iterations to locate the off-grid target. Simulations show that robust results with much smaller reconstruction errors are obtained for multiple off-grid targets compared to standard sparse reconstruction techniques. (c) 2013 SPIE and IS&Ten_US
dc.description.sponsorshipTUBITAK within Career Program Grant Compressive Remote Sensing and ImagingTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [109E280]; TUBITAK within FP7 Marie Curie IRG Grant Compressive Data Acquisition and Processing Techniques for Sensing ApplicationsTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [PIRG04-GA-2008-239506]en_US
dc.description.sponsorshipThis work was supported by TUBITAK within Career Program Grant Compressive Remote Sensing and Imaging, project number 109E280, and within FP7 Marie Curie IRG Grant Compressive Data Acquisition and Processing Techniques for Sensing Applications, project number PIRG04-GA-2008-239506.en_US
dc.language.isoenen_US
dc.publisherIs&T & Spieen_US
dc.relation.ispartofJournal of Electronic Imagingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keywords]en_US
dc.titleSparse Ground-Penetrating Radar Imaging Method for Off-The Target Problemen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume22en_US
dc.identifier.issue2en_US
dc.authorid0000-0001-8923-0299-
dc.authorid0000-0002-3698-8888-
dc.identifier.wosWOS:000322376100008en_US
dc.identifier.scopus2-s2.0-84892710786en_US
dc.institutionauthorGürbüz, Ali Cafer-
dc.identifier.doi10.1117/1.JEI.22.2.021007-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

10
checked on Dec 21, 2024

Page view(s)

64
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.