Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7526
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:57:36Z-
dc.date.available2021-09-11T15:57:36Z-
dc.date.issued2008en_US
dc.identifier.issn0010-4825-
dc.identifier.issn1879-0534-
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2007.12.002-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7526-
dc.description.abstractThe objective of the present study is to extract the representative features of the internal carotid arterial (ICA) Doppler ultrasound signals and to present the accurate classification model. This paper presented the usage of statistics over the set of the extracted features (Lyapunov exponents and the power levels of the power spectral density estimates obtained by the eigenvector methods) in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems Such as neural networks. Mixture of experts (ME) and modified mixture of experts (MME) architectures were formulated and used as basis for detection of arterial disorders. Three types of ICA Doppler signals (Doppler signals recorded from healthy subjects, subjects having stenosis, and subjects having occlusion) were classified. The classification results confirmed that the proposed ME and MME has potential in detecting the arterial disorders. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofComputers In Biology And Medicineen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDoppler signalsen_US
dc.subjectLyapunov exponentsen_US
dc.subjecteigenvector methodsen_US
dc.subjectfeature extraction/selectionen_US
dc.subjectmixture of expertsen_US
dc.subjectmodified mixture of expertsen_US
dc.titleStatistics over features for internal carotid arterial disorders detectionen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume38en_US
dc.identifier.issue3en_US
dc.identifier.startpage361en_US
dc.identifier.endpage371en_US
dc.identifier.wosWOS:000254733000008en_US
dc.identifier.scopus2-s2.0-39549089504en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.pmid18179791en_US
dc.identifier.doi10.1016/j.compbiomed.2007.12.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 2, 2024

Page view(s)

76
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.