Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7552
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKılıç, Emrah-
dc.date.accessioned2021-09-11T15:57:47Z-
dc.date.available2021-09-11T15:57:47Z-
dc.date.issued2007en_US
dc.identifier.issn0381-7032-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7552-
dc.description.abstractIn this paper, we consider a certain second order linear recurrence and then give generating matrices for the sums of positively and negatively subscripted terms of this recurrence. Further, we use matrix methods and derive explicit formulas for these sums.en_US
dc.language.isoenen_US
dc.publisherCharles Babbage Res Ctren_US
dc.relation.ispartofArs Combinatoriaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectrecurrenceen_US
dc.subjectsumen_US
dc.subjectmatrix methoden_US
dc.subjectcompanion matrixen_US
dc.titleSums of Generalized Fibonacci Numbers by Matrix Methodsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume84en_US
dc.identifier.startpage23en_US
dc.identifier.endpage31en_US
dc.authorid0000-0003-0722-7382-
dc.identifier.wosWOS:000248426900003en_US
dc.identifier.scopus2-s2.0-34548095391en_US
dc.institutionauthorKılıç, Emrah-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept07.03. Department of Mathematics-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

9
checked on Dec 21, 2024

Page view(s)

66
checked on Dec 23, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.