Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7673
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAltın, Ayşegül-
dc.contributor.authorYaman, Hande-
dc.contributor.authorPınar, Mustafa C.-
dc.date.accessioned2021-09-11T15:58:45Z-
dc.date.available2021-09-11T15:58:45Z-
dc.date.issued2011en_US
dc.identifier.issn1091-9856-
dc.identifier.issn1526-5528-
dc.identifier.urihttps://doi.org/10.1287/ijoc.1100.0380-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7673-
dc.description.abstractWe consider the network loading problem (NLP) under a polyhedral uncertainty description of traffic demands. After giving a compact multicommodity flow formulation of the problem, we state a decomposition property obtained from projecting out the flow variables. This property considerably simplifies the resulting polyhedral analysis and computations by doing away with metric inequalities. Then we focus on a specific choice of the uncertainty description, called the "hose model," which specifies aggregate traffic upper bounds for selected endpoints of the network. We study the polyhedral aspects of the NLP under hose demand uncertainty and use the results as the basis of an efficient branch-and-cut algorithm. The results of extensive computational experiments on well-known network design instances are reported.en_US
dc.description.sponsorshipTUBITAK-CNRSTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [105M322]; CNRSCentre National de la Recherche Scientifique (CNRS)European Commission [10843 TD]en_US
dc.description.sponsorshipResearch partially supported by TUBITAK-CNRS (TUBITAK project 105M322 and CNRS project BOSPHORE 10843 TD). The authors thank A. Ridha Mahjoub and Herve Kerivin for helpful discussions and three anonymous referees for detailed suggestions.en_US
dc.language.isoenen_US
dc.publisherInformsen_US
dc.relation.ispartofInforms Journal On Computingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectnetwork loading problemen_US
dc.subjectpolyhedral demand uncertaintyen_US
dc.subjecthose modelen_US
dc.subjectrobust optimizationen_US
dc.subjectpolyhedral analysisen_US
dc.subjectbranch and cuten_US
dc.titleThe Robust Network Loading Problem Under Hose Demand Uncertainty: Formulation, Polyhedral Analysis, and Computationsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume23en_US
dc.identifier.issue1en_US
dc.identifier.startpage75en_US
dc.identifier.endpage89en_US
dc.identifier.wosWOS:000287841500006en_US
dc.identifier.scopus2-s2.0-79952389855en_US
dc.institutionauthorAltın Kayhan, Ayşegül-
dc.identifier.doi10.1287/ijoc.1100.0380-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

28
checked on Nov 2, 2024

WEB OF SCIENCETM
Citations

27
checked on Nov 2, 2024

Page view(s)

54
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.