Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7673
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Altın, Ayşegül | - |
dc.contributor.author | Yaman, Hande | - |
dc.contributor.author | Pınar, Mustafa C. | - |
dc.date.accessioned | 2021-09-11T15:58:45Z | - |
dc.date.available | 2021-09-11T15:58:45Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.issn | 1091-9856 | - |
dc.identifier.issn | 1526-5528 | - |
dc.identifier.uri | https://doi.org/10.1287/ijoc.1100.0380 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7673 | - |
dc.description.abstract | We consider the network loading problem (NLP) under a polyhedral uncertainty description of traffic demands. After giving a compact multicommodity flow formulation of the problem, we state a decomposition property obtained from projecting out the flow variables. This property considerably simplifies the resulting polyhedral analysis and computations by doing away with metric inequalities. Then we focus on a specific choice of the uncertainty description, called the "hose model," which specifies aggregate traffic upper bounds for selected endpoints of the network. We study the polyhedral aspects of the NLP under hose demand uncertainty and use the results as the basis of an efficient branch-and-cut algorithm. The results of extensive computational experiments on well-known network design instances are reported. | en_US |
dc.description.sponsorship | TUBITAK-CNRSTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [105M322]; CNRSCentre National de la Recherche Scientifique (CNRS)European Commission [10843 TD] | en_US |
dc.description.sponsorship | Research partially supported by TUBITAK-CNRS (TUBITAK project 105M322 and CNRS project BOSPHORE 10843 TD). The authors thank A. Ridha Mahjoub and Herve Kerivin for helpful discussions and three anonymous referees for detailed suggestions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Informs | en_US |
dc.relation.ispartof | Informs Journal On Computing | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | network loading problem | en_US |
dc.subject | polyhedral demand uncertainty | en_US |
dc.subject | hose model | en_US |
dc.subject | robust optimization | en_US |
dc.subject | polyhedral analysis | en_US |
dc.subject | branch and cut | en_US |
dc.title | The Robust Network Loading Problem Under Hose Demand Uncertainty: Formulation, Polyhedral Analysis, and Computations | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 23 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 75 | en_US |
dc.identifier.endpage | 89 | en_US |
dc.identifier.wos | WOS:000287841500006 | en_US |
dc.identifier.scopus | 2-s2.0-79952389855 | en_US |
dc.institutionauthor | Altın Kayhan, Ayşegül | - |
dc.identifier.doi | 10.1287/ijoc.1100.0380 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
28
checked on Nov 2, 2024
WEB OF SCIENCETM
Citations
27
checked on Nov 2, 2024
Page view(s)
54
checked on Nov 4, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.