Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7754
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZarandi, Mohammad Hossein Fazel-
dc.contributor.authorTürkşen, İsmail Burhan-
dc.contributor.authorKasbi, O. Torabi-
dc.date.accessioned2021-09-11T15:59:29Z-
dc.date.available2021-09-11T15:59:29Z-
dc.date.issued2007en_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2005.11.023-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7754-
dc.description.abstractThis paper presents a new type-2 fuzzy logic system model for desulphurization process of a real steel industry in Canada. The type-2 fuzzy logic system permits us to model rule uncertainties where every membership value of an element has a second order membership value of its own. In this paper, we propose an indirect method to create second order membership grades that are amplitudes of type-2 secondary membership functions, where the primary memberships are extracted by implementation of fuzzy clustering approach. In this research, Gaussian Mixture Model (GMM) is used for the creation of second order membership grades. Furthermore, a reduction scheme is implemented which results in type-1 membership grades. In turn, this leads to a reduction of the complexity of the system. Two methods are used for the estimation of the membership functions: indirect and direct methods. In the indirect method, the system uses an interpolation scheme for the estimation of the most appropriate membership functions. In the direct method, the system is tuned by an inference algorithm for the optimization of the main parametric system. In this case, the parameters are: Schweizer and Sklar t-norm and s-norm, combination of FATI and FITA inference approaches, and Yager defuzzification. Finally, the system model is applied to the desulphurization process of a real steel industry in Canada. It is shown that the proposed type-2 fuzzy logic system is superior in comparison to multiple regression and type-1 fuzzy logic systems in terms of robustness, and error reduction. (C) 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjecttype-2 fuzzy logic systemsen_US
dc.subjecttype-2 membership functionsen_US
dc.subjectGaussian mixture modelen_US
dc.subjectinterpolation methoden_US
dc.subjectdesulphurizationen_US
dc.titleType-2 fuzzy modeling for desulphurization of steel processen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume32en_US
dc.identifier.issue1en_US
dc.identifier.startpage157en_US
dc.identifier.endpage171en_US
dc.identifier.wosWOS:000242836900017en_US
dc.institutionauthorTürkşen, İsmail Burhan-
dc.identifier.doi10.1016/j.eswa.2005.11.023-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

56
checked on Nov 2, 2024

WEB OF SCIENCETM
Citations

47
checked on Nov 2, 2024

Page view(s)

70
checked on Nov 4, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.