Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7756
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zarandi, Mohammad Hossein Fazel | - |
dc.contributor.author | Zarinbal, M. | - |
dc.contributor.author | Türkşen, İsmail Burhan | - |
dc.date.accessioned | 2021-09-11T15:59:30Z | - |
dc.date.available | 2021-09-11T15:59:30Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.citation | Joint World Congress of International-Fuzzy-Systems-Association (IFSA)/European Conference of European-Society-for-Fuzzy-Logic-and-Technology (EUSFLAT) -- JUL 20-24, 2009 -- Lisbon, PORTUGAL | en_US |
dc.identifier.isbn | 978-989-95079-6-8 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7756 | - |
dc.description.abstract | Fuzzy clustering is well known as a robust and efficient way to reduce computation cost to obtain the better results. In the literature, many robust fuzzy clustering models have been presented such as Fuzzy C-Mean (FCM) and Possibilistic C-Mean (PCM), where these methods are Type-I Fuzzy clustering. Type-II Fuzzy sets, on the other hand, can provide better performance than Type-I Fuzzy sets, especially when many uncertainties are presented in real data. The focus of this paper is to design a new Type-II Fuzzy clustering method based on Krishnapuram and Keller PCM. The proposed method is capable to cluster Type-II fuzzy data and can obtain the better number of clusters (c) and degree of fuzziness (m) by using Type-II Kwon validity index. In the proposed method, two kind of distance measurements, Euclidean and Mahalanobis are examined. The results show that the proposed model, which uses Mahalanobis distance based on Gustafson and Kessel approach is more accurate and can efficiently handle uncertainties. | en_US |
dc.description.sponsorship | Int Fuzzy Syst Assoc (IFSA), European Soc Fuzzy Log & Technol (EUSFLAT) | en_US |
dc.language.iso | en | en_US |
dc.publisher | European Soc Fuzzy Logic & Technology | en_US |
dc.relation.ispartof | Proceedings of The Joint 2009 International Fuzzy Systems Association World Congress And 2009 European Society of Fuzzy Logic And Technology Conference | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Type-II Fuzzy Logic | en_US |
dc.subject | Possibilistic C-Mean (PCM) | en_US |
dc.subject | Mahalanobis Distance | en_US |
dc.subject | Cluster Validity Index | en_US |
dc.title | Type-Ii Fuzzy Possibilistic C-Mean Clustering | en_US |
dc.type | Conference Object | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 30 | en_US |
dc.identifier.endpage | 35 | en_US |
dc.identifier.wos | WOS:000279170600006 | en_US |
dc.identifier.scopus | 2-s2.0-77957910097 | en_US |
dc.institutionauthor | Türkşen, İsmail Burhan | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | Joint World Congress of International-Fuzzy-Systems-Association (IFSA)/European Conference of European-Society-for-Fuzzy-Logic-and-Technology (EUSFLAT) | en_US |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
20
checked on Dec 21, 2024
Page view(s)
80
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.