Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7761
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çelikyılmaz, Aslı | - |
dc.contributor.author | Türkşen, İsmail Burhan | - |
dc.date.accessioned | 2021-09-11T15:59:33Z | - |
dc.date.available | 2021-09-11T15:59:33Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.citation | IEEE International Conference on Fuzzy Systems -- JUN 01-06, 2008 -- Hong Kong, PEOPLES R CHINA | en_US |
dc.identifier.isbn | 978-1-4244-1818-3 | - |
dc.identifier.issn | 1098-7584 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7761 | - |
dc.description.abstract | The Fuzzy C-Regression Method (FCRM) based on Fuzzy C-Means (FCM) clustering algorithm was proposed by Hathaway and Bezdek to solve the switching regression problems, and it was applied to fuzzy models by many to build more powerful fuzzy inference systems. The FCRM methods require initialization parameters which are in need for proper identification, since uncertain information can create imperfect expressions, which may hamper the predictive power of these models. This paper investigates the behavior of the FCRM models under uncertain parameters. The upper and lower bounds of the membership values can be identified based on the limits of level of fuzziness parameter around the certain information points such as local functions and ensemble point values. This is a further step to identify the footprint-of-uncertainty of membership values when FCRM is used. It is shown that the uncertainty of membership values induced by the level of fuzziness parameter can be identified based on first order approximations of the membership value calculation function. | en_US |
dc.description.sponsorship | IEEE | en_US |
dc.description.sponsorship | Natural Sciences and Engineering Research Council of CanadaNatural Sciences and Engineering Research Council of Canada (NSERC)CGIAR | en_US |
dc.description.sponsorship | Manuscript received December 1, 2007. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2008 IEEE International Conference On Fuzzy Systems, Vols 1-5 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [No Keywords] | en_US |
dc.title | Uncertainty Bounds of Fuzzy C-Regression Method | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | IEEE International Conference on Fuzzy Systems | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | tr_TR |
dc.identifier.startpage | 1195 | en_US |
dc.identifier.endpage | + | en_US |
dc.identifier.wos | WOS:000262974000189 | en_US |
dc.identifier.scopus | 2-s2.0-55249123153 | en_US |
dc.institutionauthor | Türkşen, İsmail Burhan | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | IEEE International Conference on Fuzzy Systems | en_US |
dc.identifier.scopusquality | - | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.