Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7786
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEfe, Mehmet Önder-
dc.date.accessioned2021-09-11T15:59:47Z-
dc.date.available2021-09-11T15:59:47Z-
dc.date.issued2006en_US
dc.identifier.citation16th International Conference on Artificial Neural Networks (ICANN 2006) -- SEP 10-14, 2006 -- Athens, GREECEen_US
dc.identifier.isbn3-540-38625-4-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7786-
dc.description.abstractCompact representation of knowledge having strong internal interactions has become possible with the developments in neurocomputing and neural information processing. The field of neural networks has offered various solutions for complex problems, however, the problems associated with the learning performance has constituted a major drawback in terms of the realization performance and computational requirements. This paper discusses the use of variable structure systems theory in learning process. The objective is to incorporate the robustness of the approach into the training dynamics, and to ensure the stability in the adjustable parameter space. The results discussed demonstrate the fulfillment of the design specifications and display how the strength of a robust control scheme could be an integral part of a learning system. This paper discusses how Gaussian radial basis function neural networks could be utilized to drive a mechatronic system's behavior into a predefined sliding regime, and it is seen that the results are promising.en_US
dc.description.sponsorshipEuropean Neural Network Soc, Int Neural Network Soc, Japanese Neural Network Soc, IEEE Computat Intelligence Socen_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofArtificial Neural Networks - Icann 2006, Pt 1en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGaussian radial basis function networksen_US
dc.subjectsliding mode controlen_US
dc.titleVSC perspective for neurocontroller tuningen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesLecture Notes in Computer Scienceen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume4131en_US
dc.identifier.startpage918en_US
dc.identifier.endpage927en_US
dc.authorid0000-0002-5992-895X-
dc.identifier.wosWOS:000241472100095en_US
dc.identifier.scopus2-s2.0-33749870248en_US
dc.institutionauthorÖnder Efe, Mehmet-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.relation.conference16th International Conference on Artificial Neural Networks (ICANN 2006)en_US
dc.identifier.scopusqualityQ2-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.5. Department of Electrical and Electronics Engineering-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

60
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.