Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/7810
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çelikyılmaz, Aslı | - |
dc.contributor.author | Türkşen, İsmail Burhan | - |
dc.date.accessioned | 2021-09-13T16:09:55Z | - |
dc.date.available | 2021-09-13T16:09:55Z | - |
dc.date.issued | 2008 | en_US |
dc.identifier.citation | Celikyilmaz, A., & Türkşen, I. B. (2008). Validation criteria for enhanced fuzzy clustering. Pattern Recognition Letters, 29(2), 97-108. | en_US |
dc.identifier.issn | 0167-8655 | - |
dc.identifier.issn | 1872-7344 | - |
dc.identifier.uri | https://doi.org/10.1016/j.patrec.2007.08.017 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/7810 | - |
dc.description.abstract | We introduce two new criterions for validation of results obtained from recent novel-clustering algorithm, improved fuzzy clustering (IFC) to be used to find patterns in regression and classification type datasets, separately. IFC algorithm calculates membership values that are used as additional predictors to form fuzzy decision functions for each cluster. Proposed validity criterions are based on the ratio of compactness to separability of clusters. The optimum compactness of a cluster is represented with average distances between every object and cluster centers, and total estimation error from their fuzzy decision functions. The separability is based on a conditional ratio between the similarities between cluster representatives and similarities between fuzzy decision surfaces of each cluster. The performance of the proposed validity criterions are compared to other structurally similar cluster validity indexes using datasets from different domains. The results indicate that the new cluster validity functions are useful criterions when selecting parameters of IFC models. (c) 2007 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Pattern Recognition Letters | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | supervised clustering | en_US |
dc.subject | fuzzy clustering | en_US |
dc.subject | cluster validity index | en_US |
dc.subject | fuzzy functions | en_US |
dc.title | Validation Criteria for Enhanced Fuzzy Clustering | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Industrial Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 29 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 97 | en_US |
dc.identifier.endpage | 108 | en_US |
dc.identifier.wos | WOS:000252346600001 | en_US |
dc.institutionauthor | Türkşen, İsmail Burhan | - |
dc.identifier.doi | 10.1016/j.patrec.2007.08.017 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q1 | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Endüstri Mühendisliği Bölümü / Department of Industrial Engineering WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
37
checked on Dec 21, 2024
WEB OF SCIENCETM
Citations
23
checked on Dec 21, 2024
Page view(s)
130
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.