Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8157
Title: Synthesis of Cu(in,ga)s-2 Nanoparticles Via Hot-Injection Method and Incorporation With 3d-zno/In2s3 Heterojunction Photoanode for Enhanced Optical and Photoelectrochemical Properties
Authors: Altaf, Çiğdem Tuç
Sankır, Mehmet
Sankır, Nurdan Demirci
Keywords: Nanoparticles
Energy storage and conversion
Solar energy materials
Photocathodes
Efficient
Ink
Publisher: Elsevier
Abstract: Copper-based ternary Cu(In,Ga)S-2 (CIGS) nanoparticles (Np) in chalcopyrite crystal phase have been synthesized via hot-injection method to be used as colloidal Np ink for 3D-ZnO nanosheet thin film sensitization for the enhancement of light absorption in the visible region due to its suitable bandgap. Additionally, an indium sulfide (In2S3) layer has been deposited on the 3D-ZnO/CIGS thin-film for surface modification of CIGS layer to protect against photocorrosion, and bare 3D-ZnO for constructing suitable band alignment in photoelectrochemical water splitting (PEC) applications for hydrogen production. The 3D-ZnO/In2S3 photoelectrode generated the photocurrent density (J) of - 1.1 mA.cm(-2) (at 1.2 V vs. RHE) and an incident photon to-current efficiency (IPCE) of 35.0% at 382 nm. On the other hand, after incorporation of CIGS-Np between 3D-ZnO NS and In2S3 layers, 2.2 mA.cm(-2) of J (at 1.2 V vs. RHE) and 53.2% IPCE at 382 nm have been observed.
URI: https://doi.org/10.1016/j.matlet.2021.130602
https://hdl.handle.net/20.500.11851/8157
ISSN: 0167-577X
1873-4979
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

WEB OF SCIENCETM
Citations

14
checked on Dec 21, 2024

Page view(s)

74
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.