Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8239
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEgecioğlu, Ömer-
dc.contributor.authorSaygi, Elif-
dc.contributor.authorSaygi, Zülfükar-
dc.date.accessioned2022-01-15T13:00:42Z-
dc.date.available2022-01-15T13:00:42Z-
dc.date.issued2021-
dc.identifier.issn0129-0541-
dc.identifier.issn1793-6373-
dc.identifier.urihttps://doi.org/10.1142/S0129054121500271-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8239-
dc.description.abstractWe introduce alternate Lucas cubes, a new family of graphs designed as an alternative for the well known Lucas cubes. These interconnection networks are subgraphs of Fibonacci cubes and have a useful fundamental decomposition similar to the one for Fibonacci cubes. The vertices of alternate Lucas cubes are constructed from binary strings that are encodings of Lucas representation of integers. As well as ordinary hypercubes, Fibonacci cubes and Lucas cubes, alternate Lucas cubes have several interesting structural and enumerative properties. In this paper we study some of these properties. Specifically, we give the fundamental decomposition giving the recursive structure, determine the number of edges, number of vertices by weight, the distribution of the degrees; as well as the properties of induced hypercubes, q-cube polynomials and maximal hypercube polynomials. We also obtain the irregularity polynomials of this family of graphs, determine the conditions for Hamiltonicity, and calculate metric properties such as the radius, diameter, and the center.en_US
dc.description.sponsorshipTUBITAKTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [120F125]en_US
dc.description.sponsorshipThe authors would like to thank the reviewers for their useful comments, which greatly improved the presentation and the readability of the paper. The first author would like to acknowledge the hospitality of Reykjavik University during his sabbatical stay there in 2019, during which a portion of this research was carried out. This work is partially supported by TUBITAK under Grant No. 120F125.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofInternational Journal of Foundations of Computer Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHypercubeen_US
dc.subjectFibonacci cubeen_US
dc.subjectLucas cubeen_US
dc.subjectAlternate Lucas cubeen_US
dc.subjectFibonacci Cubesen_US
dc.subjectHypercubesen_US
dc.titleAlternate Lucas Cubesen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Science and Literature, Department of Mathematicsen_US
dc.departmentFakülteler, Fen Edebiyat Fakültesi, Matematik Bölümütr_TR
dc.identifier.volume32en_US
dc.identifier.issue7en_US
dc.identifier.startpage871en_US
dc.identifier.endpage899en_US
dc.identifier.wosWOS:000722223200005en_US
dc.identifier.scopus2-s2.0-85112392929en_US
dc.institutionauthorSaygı, Zülfükar-
dc.identifier.doi10.1142/S0129054121500271-
dc.authorscopusid7003684163-
dc.authorscopusid37091562700-
dc.authorscopusid15081022700-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Matematik Bölümü / Department of Mathematics
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

3
checked on Dec 21, 2024

Page view(s)

126
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.