Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8315
Title: | Performance analysis of machine learning models for object recognition in underwater video images | Other Titles: | Sualti video görüntülerinde nesne tanima amaçli yapay ö?renme modellerinin performans analizi | Authors: | Özdilli, B.G. Arslan, M.B. Alp, T. Albayrak, O. Ünal, P. Bozkurt, O. Özbayoğlu, A. Murat |
Keywords: | Computer vision Deep learning Machine learning Object recognition Underwater image analysis Cables Deep learning Logistic regression Multilayer neural networks Object detection Object recognition Support vector machines Underwater equipment Accuracy level Classification performance Image histograms Learning models Machine learning models Multi layer perceptron Performance analysis Underwater cables Learning systems |
Publisher: | Institute of Electrical and Electronics Engineers Inc. | Abstract: | In this study, our primary aim is to detect different formations, objects on the images taken from various underwater videos. For this purpose, machine learning models such as SVM, multi-layer perceptron, logistic regression that use attributes, image histogram obtained from images were chosen. In addition, Autoencoder and CNN based deep learning models were used directly over images and their performances were compared. According to the results, it was observed that all models were satisfactory and achieved good classification performances. The highest performance was observed in the Autoencoder based deep learning model, which achieved an accuracy level of %95. In the future, we are planning to continue studies to focus on underwater cable tracking and detecting errors and anomalies in underwater cables. © 2021 IEEE. | Description: | 29th IEEE Conference on Signal Processing and Communications Applications, SIU 2021 -- 9 June 2021 through 11 June 2021 -- 170536 | URI: | https://doi.org/10.1109/SIU53274.2021.9477898 https://hdl.handle.net/20.500.11851/8315 |
ISBN: | 9781665436496 |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.