Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/851
Title: | Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities | Authors: | Seyfioğlu, Mehmet Saygın Özbayoğlu, Ahmet Murat Gürbüz, Sevgi Zübeyde |
Keywords: | Signatures Future selection Radar Neural networks Micro-Doppler Gait recognition Deep learning Convolutional autoencoder (CAE) |
Publisher: | IEEE | Source: | Seyfioğlu, M. S., Özbayoğlu, A. M., & Gürbüz, S. Z. (2018). Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities. IEEE Transactions on Aerospace and Electronic Systems, 54(4), 1709-1723. | Abstract: | Radar-based activity recognition is a problem that has been of great interest due to applications such as border control and security, pedestrian identification for automotive safety, and remote health monitoring. This paper seeks to show the efficacy of micro-Doppler analysis to distinguish even those gaits whose micro-Doppler signatures are not visually distinguishable. Moreover, a three-layer, deep convolutional autoencoder (CAE) is proposed, which utilizes unsupervised pretraining to initialize the weights in the subsequent convolutional layers. This architecture is shown to be more effective than other deep learning architectures, such as convolutional neural networks and autoencoders, as well as conventional classifiers employing predefined features, such as support vector machines (SVM), random forest, and extreme gradient boosting. Results show the performance of the proposed deep CAE yields a correct classification rate of 94.2% for micro-Doppler signatures of 12 different human activities measured indoors using a 4 GHz continuous wave radar-17.3% improvement over SVM. | URI: | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8283539 https://hdl.handle.net/20.500.11851/851 |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
130
checked on Nov 2, 2024
WEB OF SCIENCETM
Citations
238
checked on Nov 2, 2024
Page view(s)
290
checked on Nov 4, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.