Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8605
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKardas, Berk-
dc.contributor.authorBayar, Ismail Erdem-
dc.contributor.authorOzyer, Tansel-
dc.contributor.authorAlhajj, Reda-
dc.date.accessioned2022-07-30T16:41:54Z-
dc.date.available2022-07-30T16:41:54Z-
dc.date.issued2021-
dc.identifier.citationKardaş, B., Bayar, İ. E., Özyer, T., & Alhajj, R. (2021, November). Detecting spam tweets using machine learning and effective preprocessing. In Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (pp. 393-398).en_US
dc.identifier.isbn9781450391283-
dc.identifier.issn2473-9928-
dc.identifier.issn2473-991X-
dc.identifier.urihttps://doi.org/10.1145/3487351.3490968-
dc.description.abstractNowadays, with the rapid increase in popularity of online social networks (OSNs), these platforms are realized as ideal places for spammers. Unfortunately, these spammers can easily publish malicious content, advertise phishing scams by taking advantage of OSNs. Therefore, effective identification and filtering of spam tweets will be beneficial to both OSNs and users. However, it is becoming increasingly difficult to check and eliminate spam tweets due to this great flow of posts. Motivated by these observations, in this paper we propose an approach for the detection of spam tweets using machine learning and effective preprocessing techniques. The approach proposes the advantages of the preprocessing and which of these preprocessing techniques are the most effective. To compare these techniques UtkML Twitter spam dataset is used in testing. After the most effective methods determined, the detection accuracy of the spam tweets will be better optimized by combining them. We have evaluated our solution with four different machine learning algorithms namely - Naive Bayes Classifier, Neural Network, Logistic Regression and Support Vector Machine. With SVM Classifier, we are able to achieve an accuracy of 93.02%. Experimental results show that our approach can improve the performance of spam tweet classification effectively.en_US
dc.language.isoenen_US
dc.publisherAssoc Computing Machineryen_US
dc.relation.ispartofIEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) -- NOV 08-11, 2021 -- ELECTR NETWORKen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTwitteren_US
dc.subjectSpam Detectionen_US
dc.subjectMachine Learningen_US
dc.subjectPreprocessingen_US
dc.subjectSocial Mediaen_US
dc.titleDetecting Spam Tweets Using Machine Learning and Effective Preprocessingen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesProceedings of the IEEE-ACM International Conference on Advances in Social Networks Analysis and Mining-
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.startpage393en_US
dc.identifier.endpage398en_US
dc.identifier.wosWOS:001196170500064-
dc.identifier.scopus2-s2.0-85124395764-
dc.institutionauthorBayar, İsmail Erdem-
dc.identifier.doi10.1145/3487351.3490968-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
dc.description.woscitationindexConference Proceedings Citation Index - Science - Conference Proceedings Citation Index - Social Science &amp- Humanities-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Mar 8, 2025

WEB OF SCIENCETM
Citations

2
checked on Mar 4, 2025

Page view(s)

126
checked on Mar 3, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.