Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8836
Title: Fabrication of NiCu interconnected porous nanostructures for highly selective methanol oxidation coupled with hydrogen evolution reaction
Authors: Arshad F.
Tahir A.
Haq T.U.
Duran H.
Hussain I.
Sher F.
Keywords: Bubble templating electrodeposition
Energy-saving hydrogen production
Methanol-assisted hydrogen production
NiCu porous Interconnected network
Selective methanol oxidation reaction
Anodic oxidation
Binary alloys
Copper
Electrocatalysts
Electrodeposition
Electrodes
Electrolytes
Energy conservation
Energy utilization
Methanol
Nanostructures
Reaction kinetics
Bubble templating electrodeposition
Energy savings
Energy-saving hydrogen production
Energy-savings
Interconnected network
Methanol oxidation reactions
Methanol-assisted hydrogen production
Nicu porous interconnected network
Selective methanol oxidation reaction
Templating
Hydrogen production
Publisher: Elsevier Ltd
Abstract: Electrocatalytic water electrolysis is the most promising clean and efficient process for pure and clean generation of hydrogen. However, water oxidation reaction requires a large overpotential owing to its slow kinetics, causing a lower efficiency of hydrogen production and high energy consumption. Herein, we report the bimetallic NiCu interconnected porous nanostructures on copper foil (NiCu@Cu) prepared by hydrogen bubbles templating electrodeposition technique for methanol oxidation reaction (MOR), which replaces the kinetically sluggish water oxidation reaction and enhances the hydrogen production with lower energy input. With their high macroporosity, interconnected growth on copper foil with excellent conductivity and easy flow of electrolyte on electrode interface, and stabilization of active sites due to bimetallic synergistic effects, the NiCu@Cu electrocatalysts exhibit outstanding activities for HER and MOR. The NiCu@Cu requiring just 1.32 V anodic potential vs RHE at 10 mA cm?2 for MOR which is significantly lower than that for water oxidation reaction. Moreover, the electrolyzer using NiCu@Cu/NiCu@Cu for anodic MOR and cathodic H2 production only needs a low input voltage of 1.45 V to deliver a current density of 10 mA cm?2 with impressive durability. © 2022 Hydrogen Energy Publications LLC
URI: https://doi.org/10.1016/j.ijhydene.2022.08.187
https://hdl.handle.net/20.500.11851/8836
ISSN: 0360-3199
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 9, 2024

WEB OF SCIENCETM
Citations

23
checked on Aug 31, 2024

Page view(s)

68
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.