Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8966
Title: Cortical Spreading Depression Can Be Triggered by Sensory Stimulation in Primed Wild Type Mouse Brain: a Mechanistic Insight To Migraine Aura Generation
Authors: Hanalioglu, Sahin
Taskiran-Sag, Aslihan
Karatas, Hulya
Donmez-Demir, Buket
Yilmaz-Ozcan, Sinem
Eren-Kocak, Emine
Dalkara, Turgay
Keywords: Cortical spreading depression
Ouabain
Asante Potassium Green-4
Photic stimulation
Whisker stimulation
Migraine
Glutamate Transporters
Alpha-2 Subunit
Susceptibility
Astrocytes
Induction
Increases
Impact
Atpase
Cortex
Pump
Publisher: Bmc
Abstract: Background Unlike the spontaneously appearing aura in migraineurs, experimentally, cortical spreading depression (CSD), the neurophysiological correlate of aura is induced by non-physiological stimuli. Consequently, neural mechanisms involved in spontaneous CSD generation, which may provide insight into how migraine starts in an otherwise healthy brain, remain largely unclear. We hypothesized that CSD can be physiologically induced by sensory stimulation in primed mouse brain. Methods Cortex was made susceptible to CSD with partial inhibition of Na+/K+-ATPase by epidural application of a low concentration of Na+/K+-ATPase blocker ouabain, allowing longer than 30-min intervals between CSDs or by knocking-down alpha 2 subunit of Na+/K+-ATPase, which is crucial for K+ and glutamate re-uptake, with shRNA. Stimulation-triggered CSDs and extracellular K+ changes were monitored in vivo electrophysiologically and a K+-sensitive fluoroprobe (IPG-4), respectively. Results After priming with ouabain, photic stimulation significantly increased the CSD incidence compared with non-stimulated animals (44.0 vs. 4.9%, p < 0.001). Whisker stimulation also significantly increased the CSD incidence, albeit less effectively (14.9 vs. 2.4%, p = 0.02). Knocking-down Na+/K+-ATPase (50% decrease in mRNA) lowered the CSD threshold in all mice tested with KCl but triggered CSDs in 14.3% and 16.7% of mice with photic and whisker stimulation, respectively. Confirming Na+/K+-ATPase hypofunction, extracellular K+ significantly rose during sensory stimulation after ouabain or shRNA treatment unlike controls. In line with the higher CSD susceptibility observed, K+ rise was more prominent after ouabain. To gain insight to preventive mechanisms reducing the probability of stimulus-evoked CSDs, we applied an A1-receptor antagonist (DPCPX) to the occipital cortex, because adenosine formed during stimulation from ATP can reduce CSD susceptibility. DPCPX induced spontaneous CSDs but only small-DC shifts along with suppression of EEG spikes during photic stimulation, suggesting that the inhibition co-activated with sensory stimulation could limit CSD ignition when K+ uptake was not sufficiently suppressed as with ouabain. Conclusions Normal brain is well protected against CSD generation. For CSD to be ignited under physiological conditions, priming and predisposing factors are required as seen in migraine patients. Intense sensory stimulation has potential to trigger CSD when co-existing conditions bring extracellular K+ and glutamate concentrations over CSD-ignition threshold and stimulation-evoked inhibitory mechanisms are overcome.
URI: https://doi.org/10.1186/s10194-022-01474-0
https://hdl.handle.net/20.500.11851/8966
ISSN: 1129-2369
1129-2377
Appears in Collections:Dahili Tıp Bilimleri Bölümü / Department of Internal Medical Sciences
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

WEB OF SCIENCETM
Citations

6
checked on Aug 31, 2024

Page view(s)

74
checked on Jan 13, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.