Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/8970
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIsil Akcay H.-
dc.contributor.authorOnat E.-
dc.date.accessioned2022-11-30T19:24:53Z-
dc.date.available2022-11-30T19:24:53Z-
dc.date.issued2022-
dc.identifier.isbn9.78E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864793-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/8970-
dc.description30th Signal Processing and Communications Applications Conference, SIU 2022 -- 15 May 2022 through 18 May 2022 -- -- 182415en_US
dc.description.abstractIn this paper, the fusion of distance and velocity measurements using radar and GPS is discussed. A Kalman Filter (KF) was designed for the fusion of the measurement results obtained with these different systems. The designed model was used to estimate the position and velocity of a runner. Different scenarios were produced and tested, such as error-free measurements for the entire time interval, unexpected measurements from radar or GPS satellites for a certain period of time. Root Mean Square Error values were calculated and the success of position and velocity estimations were examined. It has been observed that the designed Kalman Filter predictions are more successful than radar and GPS systems. © 2022 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFusionen_US
dc.subjectGPSen_US
dc.subjectKalman Filteren_US
dc.subjectPosition Estimationen_US
dc.subjectRadaren_US
dc.subjectVelocity Estimationen_US
dc.subjectGlobal positioning systemen_US
dc.subjectMean square erroren_US
dc.subjectRadaren_US
dc.subjectRadar measurementen_US
dc.subjectVelocityen_US
dc.subjectDesigned modelsen_US
dc.subjectError-free measurementsen_US
dc.subjectGPS satellitesen_US
dc.subjectPosition detectionen_US
dc.subjectPosition estimationen_US
dc.subjectRadar satellitesen_US
dc.subjectRoot mean square errorsen_US
dc.subjectTime intervalen_US
dc.subjectVelocity detectionen_US
dc.subjectVelocity estimationen_US
dc.subjectKalman filtersen_US
dc.titlePosition and Velocity Detection With Radar and Gps Fusionen_US
dc.title.alternativeRadar ve Gps Füzyonu ile Mesafe ve Hiz Tespitien_US
dc.typeConference Objecten_US
dc.identifier.wosWOS:001307163400132-
dc.identifier.scopus2-s2.0-85138678962-
dc.identifier.doi10.1109/SIU55565.2022.9864793-
dc.authorscopusid57904775300-
dc.authorscopusid43261735100-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.ozel2022v3_Editen_US
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

44
checked on Jan 13, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.