Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/8970
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Isil Akcay H. | - |
dc.contributor.author | Onat E. | - |
dc.date.accessioned | 2022-11-30T19:24:53Z | - |
dc.date.available | 2022-11-30T19:24:53Z | - |
dc.date.issued | 2022 | - |
dc.identifier.isbn | 9.78E+12 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU55565.2022.9864793 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/8970 | - |
dc.description | 30th Signal Processing and Communications Applications Conference, SIU 2022 -- 15 May 2022 through 18 May 2022 -- -- 182415 | en_US |
dc.description.abstract | In this paper, the fusion of distance and velocity measurements using radar and GPS is discussed. A Kalman Filter (KF) was designed for the fusion of the measurement results obtained with these different systems. The designed model was used to estimate the position and velocity of a runner. Different scenarios were produced and tested, such as error-free measurements for the entire time interval, unexpected measurements from radar or GPS satellites for a certain period of time. Root Mean Square Error values were calculated and the success of position and velocity estimations were examined. It has been observed that the designed Kalman Filter predictions are more successful than radar and GPS systems. © 2022 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2022 30th Signal Processing and Communications Applications Conference, SIU 2022 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fusion | en_US |
dc.subject | GPS | en_US |
dc.subject | Kalman Filter | en_US |
dc.subject | Position Estimation | en_US |
dc.subject | Radar | en_US |
dc.subject | Velocity Estimation | en_US |
dc.subject | Global positioning system | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Radar | en_US |
dc.subject | Radar measurement | en_US |
dc.subject | Velocity | en_US |
dc.subject | Designed models | en_US |
dc.subject | Error-free measurements | en_US |
dc.subject | GPS satellites | en_US |
dc.subject | Position detection | en_US |
dc.subject | Position estimation | en_US |
dc.subject | Radar satellites | en_US |
dc.subject | Root mean square errors | en_US |
dc.subject | Time interval | en_US |
dc.subject | Velocity detection | en_US |
dc.subject | Velocity estimation | en_US |
dc.subject | Kalman filters | en_US |
dc.title | Position and Velocity Detection With Radar and Gps Fusion | en_US |
dc.title.alternative | Radar ve Gps Füzyonu ile Mesafe ve Hiz Tespiti | en_US |
dc.type | Conference Object | en_US |
dc.identifier.wos | WOS:001307163400132 | - |
dc.identifier.scopus | 2-s2.0-85138678962 | - |
dc.identifier.doi | 10.1109/SIU55565.2022.9864793 | - |
dc.authorscopusid | 57904775300 | - |
dc.authorscopusid | 43261735100 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.ozel | 2022v3_Edit | en_US |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | tr | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.