Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9023
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzden H.-
dc.contributor.authorTavli B.-
dc.contributor.authorDemirci M.F.-
dc.date.accessioned2022-11-30T19:26:30Z-
dc.date.available2022-11-30T19:26:30Z-
dc.date.issued2022-
dc.identifier.isbn9.78167E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864741-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9023-
dc.description30th Signal Processing and Communications Applications Conference, SIU 2022 -- 15 May 2022 through 18 May 2022 -- -- 182415en_US
dc.description.abstractOne of the most important problems faced by broadcasters is the unauthorized use of their images by third parties or organizations in a large-scale database, which contains hundreds of thousands of images. For this reason, it is important to perform an efficient and effective image retrieval, whose objective is to find the most similar images to a given test image. In addition, test images often contain text, and the presence of the text together with the visual part complicates the search process. In this paper, we present an image retrieval framework based on a bag of visual words, which has been shown to be effective in the literature. A convolutional neural network model is used to parse the text in the images. Experiments demonstrate the efficacy of this model in a large database. © 2022 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBag of Visual Wordsen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectImage Retrievalen_US
dc.subjectSIFTen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectNeural network modelsen_US
dc.subjectBag-of-visual-wordsen_US
dc.subjectConvolutional neural networken_US
dc.subjectImage identificationen_US
dc.subjectNetwork-baseden_US
dc.subjectRetrieval modelsen_US
dc.subjectSIFTen_US
dc.subjectTest imagesen_US
dc.subjectText imagesen_US
dc.subjectThird partiesen_US
dc.subjectViolation detectionsen_US
dc.subjectImage retrievalen_US
dc.titleAn Efficient Image Retrieval Model With Convolutional Neural Network Based Text/Image Identification for Copyright Violation Detectionen_US
dc.title.alternativeTelif Hakki Ihlali Tespiti için Evrişimsel Sinir A?i Tabanli Metin/görüntü Tanimlamali Verimli Bir Görüntü Geri Getirme Modelien_US
dc.typeConference Objecten_US
dc.identifier.wosWOS:001307163400080en_US
dc.identifier.scopus2-s2.0-85138707584en_US
dc.institutionauthorTavli, Bülent-
dc.identifier.doi10.1109/SIU55565.2022.9864741-
dc.authorscopusid57904170800-
dc.authorscopusid55955366400-
dc.authorscopusid7006827854-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.ozel2022v3_Editen_US
item.openairetypeConference Object-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

88
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.