Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/9080
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Torusdag, M. Bugra | - |
dc.contributor.author | Kutlu, Mucahid | - |
dc.contributor.author | Selçuk, Ali Aydın | - |
dc.date.accessioned | 2022-11-30T19:27:44Z | - |
dc.date.available | 2022-11-30T19:27:44Z | - |
dc.date.issued | 2022 | - |
dc.identifier.issn | 1300-0632 | - |
dc.identifier.issn | 1303-6203 | - |
dc.identifier.uri | https://doi.org/10.55730/1300-0632.3848 | - |
dc.identifier.uri | https://search.trdizin.gov.tr/yayin/detay/533998 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/9080 | - |
dc.description.abstract | Social bots are employed to automatically perform online social network activities; thereby, they can also be utilized in spreading misinformation and malware. Therefore, many researchers have focused on the automatic detection of social bots to reduce their negative impact on society. However, it is challenging to evaluate and compare existing studies due to difficulties and limitations in sharing datasets and models. In this study, we conduct a comparative study and evaluate four different bot detection systems in various settings using 20 different public datasets. We show that high-quality datasets covering various social bots are critical for a reliable evaluation of bot detection methods. In addition, our experiments suggest that Botometer is preferable to others in order to detect social bots. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [ARDEB 3501, 120E514] | en_US |
dc.description.sponsorship | This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) ARDEB 3501 Grant No 120E514. The statements made herein are solely the responsibility of the authors. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Scientific And Technological Research Council Turkey | en_US |
dc.relation.ispartof | Turkish Journal of Electrical Engineering and Computer Sciences | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | en_US | |
dc.subject | Social Bot Detection | en_US |
dc.subject | Evaluation | en_US |
dc.subject | Reproducibility | en_US |
dc.subject | Networks | en_US |
dc.subject | Design | en_US |
dc.title | Evaluation of Social Bot Detection Models | en_US |
dc.type | Article | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.identifier.volume | 30 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 1269 | en_US |
dc.identifier.endpage | 1283 | en_US |
dc.identifier.wos | WOS:000806802400005 | - |
dc.identifier.scopus | 2-s2.0-85132216625 | - |
dc.institutionauthor | Kutlu, Mücahid | - |
dc.institutionauthor | Selçuk, Ali Aydin | - |
dc.identifier.doi | 10.55730/1300-0632.3848 | - |
dc.authorscopusid | 57749897900 | - |
dc.authorscopusid | 35299304300 | - |
dc.authorscopusid | 7004457288 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.identifier.trdizinid | 533998 | - |
dc.ozel | 2022v3_Edit | en_US |
dc.identifier.wosquality | Q4 | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
crisitem.author.dept | 02.3. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
WEB OF SCIENCETM
Citations
3
checked on Jan 11, 2025
Page view(s)
112
checked on Jan 20, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.