Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9646
Title: The ATLAS Inner Detector commissioning and calibration
Authors: Aad, G.
Abbott, B.
Abdallah, J.
Abdelalim, A. A.
Abdesselam, A.
Abdinov, O.
Adye, T.
Keywords: Semiconductor Tracker
Ionization Energy
Readout
Publisher: Springer
Abstract: The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and insitu calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1 +/- 0.9 mu m and a relative momentum resolution sigma(p)/p = (4.83 +/- 0.16) x 10(-4) GeV-1 x p(T) have been measured for high momentum tracks.
URI: https://doi.org/10.1140/epjc/s10052-010-1366-7
https://hdl.handle.net/20.500.11851/9646
ISSN: 1434-6044
1434-6052
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

84
checked on Nov 9, 2024

WEB OF SCIENCETM
Citations

83
checked on Nov 9, 2024

Page view(s)

74
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.