Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9848
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİlhan, İhsan-
dc.contributor.authorGürbüz, Afi Cafer-
dc.date.accessioned2022-12-25T20:48:14Z-
dc.date.available2022-12-25T20:48:14Z-
dc.date.issued2015-
dc.identifier.isbn978-1-4673-7386-9-
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9848-
dc.description23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEYen_US
dc.description.abstractDetection of parametric shapes i.e. line, circle, ellipse etc. in images is one of the most significant topics in diverse areas such as image and signal processing, pattern recognition and remote sensing. Compressive Sensing(CS) theory details how the signal is sparsely reconstructed in a known basis from low number of linear measurement. Sparsity of parametric shapes in parameter space offers to detect parametric shapes from low number of linear measurements under frameworks proposed by CS methods. Joint detecion performance of different parametric shapes in image is studied under different small number of measurements and noise level. Because of being both discrete image space and discretized parameter space, effect of offgrid, one of the most important problem in CS, is analysed in terms of shape detection. Results show that parametric shapes can robustly be found with a few measurements and effects of offgrid are seen as distribution of target energy in parameter space.en_US
dc.description.sponsorshipDept Comp Engn & Elect & Elect Engn,Elect & Elect Engn,Bilkent Univen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2015 23rd Signal Processing and Communications Applications Conference (Siu)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectshape detectionen_US
dc.subjectcompressive sensingen_US
dc.subjectHough transformen_US
dc.subjectline detectionen_US
dc.subjectcircle detectionen_US
dc.subjectoff-griden_US
dc.titleFinding Sparse Parametric Shapes From Low Number of Image Measurementsen_US
dc.typeConference Objecten_US
dc.departmentESTÜen_US
dc.identifier.startpage2314en_US
dc.identifier.endpage2317en_US
dc.authoridGurbuz, Ali Cafer/0000-0001-8923-0299-
dc.identifier.wosWOS:000380500900560-
dc.institutionauthor[Belirlenecek]-
dc.authorwosidGurbuz, Ali Cafer/AAB-5330-2020-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.fulltextNo Fulltext-
item.languageiso639-1tr-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

80
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.