Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9860
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTang, X.-
dc.contributor.authorKandemir, M.T.-
dc.contributor.authorZhao, H.-
dc.contributor.authorJung, M.-
dc.contributor.authorKarakoy, M.-
dc.date.accessioned2022-12-25T20:51:47Z-
dc.date.available2022-12-25T20:51:47Z-
dc.date.issued2019-
dc.identifier.issn0163-5999-
dc.identifier.urihttps://doi.org/10.1145/3309697.3331487-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9860-
dc.description.abstractThe cost of moving data between compute elements and storage elements plays a signiicant role in shaping the overall performance of applications.We present a compiler-driven approach to reducing data movement costs. Our approach, referred to as Computing with Near Data (CND), is built upon a concept called 'recomputation', in which a costly data access is replaced by a few less costly data accesses plus some extra computation, if the cumulative cost of the latter is less than that of the costly data access. Experimental result reveals that i) the average recomputability across our benchmarks is 51.1%, ii) our compiler-driven strategy is able to exploit 79.3% of the recomputation opportunities presented by our workloads, and iii) our enhancements increase the value of the recomputability metric signiicantly. © 2019 Copyright is held by the owner/author(s).en_US
dc.description.sponsorship2017-22-0105; National Science Foundation, NSF: 1409095, 1439021, 1439057, 1526750, 1626251, 1629129, 1629915, 1763681; U.S. Department of Energy, USDOE: 2015M3C4A7065645, DEAC02-05CH11231; Intel Corporation; Samsung; National Research Foundation of Korea, NRF: 2016R1C1B2015312en_US
dc.description.sponsorshipWe thank Evgenia Smirni for shepherding our paper. We also thank the anonymous reviewers for their constructive feedback. Myoungsoo Jung is in part supported by NRF 2016R1C1B2015312, DOE DEAC02-05CH11231, IITP-2018-2017-0-01015, NRF 2015M3C4A7065645, Yonsei Future Research Grant (2017-22-0105) and Samsung grant (2018). This research is supported in part by NSF grants #1526750, #1763681, #1439057, #1439021, #1629129, #1409095, #1626251, #1629915, and a grant from Intel.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.ispartofPerformance Evaluation Reviewen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectdata movementen_US
dc.subjectmanycore systemsen_US
dc.subjectrecomputationen_US
dc.subjectProgram compilersen_US
dc.subjectCumulative costen_US
dc.subjectData accessen_US
dc.subjectData movementsen_US
dc.subjectExtra computationsen_US
dc.subjectRecomputationen_US
dc.subjectStorage elementsen_US
dc.subjectDigital storageen_US
dc.titleComputing with Near Data [Article]en_US
dc.typeArticleen_US
dc.departmentESTÜen_US
dc.identifier.volume47en_US
dc.identifier.issue1en_US
dc.identifier.startpage27en_US
dc.identifier.endpage28en_US
dc.identifier.scopus2-s2.0-85086497978en_US
dc.institutionauthor[Belirlenecek]-
dc.identifier.doi10.1145/3309697.3331487-
dc.authorscopusid57013793800-
dc.authorscopusid35549787100-
dc.authorscopusid57198971738-
dc.authorscopusid55308889900-
dc.authorscopusid12759396300-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusquality--
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

36
checked on Nov 11, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.