Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/9879
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKakaç, S.-
dc.contributor.authorYazıcıoğlu, A.G.-
dc.date.accessioned2022-12-25T20:51:50Z-
dc.date.available2022-12-25T20:51:50Z-
dc.date.issued2014-
dc.identifier.isbn9.78E+12-
dc.identifier.issn2578-5486-
dc.identifier.urihttps://doi.org/10.1615/ICHMT.2014.IntSympConvHeatMassTransf.10-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/9879-
dc.descriptionInternational Symposium on Convective Heat and Mass Transfer, CONV 2014 -- 8 June 2014 through 13 June 2014 -- 268949en_US
dc.description.abstractNanofluids are promising heat transfer fluids due to their high thermal conductivity. In order to utilize nanofluids in practical applications, accurate prediction of forced convection heat transfer of nanofluids is necessary. In the first part of the present study, we consider the application of some classical correlations of forced convection heat transfer developed for the flow of pure fluids to the case of nanofluids by the use of nanofluid thermophysical properties. The results are compared with experimental data available in the literature, and it is shown that this approach underestimates the heat transfer enhancement. Furthermore, predictions of a recent correlation based on a thermal dispersion model are also examined, and good agreement with the experimental data is observed. The thermal dispersion model is further investigated through a single-phase, temperature-dependent thermal conductivity approach. Numerical analysis of hydrodynamically fully developed laminar forced convection of Al2 O3 (20 nm)/water nanofluid inside a circular tube under constant wall temperature and constant wall heat flux boundary conditions has been carried out. Results of the numerical solution are compared with the experimental data available in the literature. The results show that the single-phase assumption with temperature-dependent thermal conductivity and thermal dispersion is an accurate way of heat transfer enhancement analysis of nanofluids in convective heat transfer. © 2014, Begell House Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherBegell House Inc.en_US
dc.relation.ispartofInternational Symposium on Advances in Computational Heat Transferen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectForced convectionen_US
dc.subjectHeat transfer enhancementen_US
dc.subjectLaminar flowen_US
dc.subjectNanofluidsen_US
dc.subjectThermal dispersionen_US
dc.titleNumerical Analysis of Convective Heat Transfer With Temperature Dependent Thermal Conductivity of Nanofluids and Thermal Dispersionen_US
dc.typeConference Objecten_US
dc.departmentESTÜen_US
dc.identifier.startpage1en_US
dc.identifier.scopus2-s2.0-85120861370en_US
dc.institutionauthor[Belirlenecek]-
dc.identifier.doi10.1615/ICHMT.2014.IntSympConvHeatMassTransf.10-
dc.authorscopusid7006237712-
dc.authorscopusid6701537790-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.trdiziniden_US]
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 21, 2024

Page view(s)

72
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.