
EVALUATION OF SUMS CONTAINING TRIPLE AERATED GENERALIZED

FIBONOMIAL COEFFICIENTS

EMRAH KILIÇ

Abstract. We evaluate a class of sums of triple aerated Fibonomial coefficients with a generalized Fibonacci

number as coefficient. The technique is to rewrite everything in terms of a variable q and then to use Rothe’s

identity from classical q-calculus.

1. Introduction

Define the second order linear sequences {Un} and {Vn} for n ≥ 2 by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,

Vn = pVn−1 + Vn−2, V0 = 2, V1 = p.

For n ≥ k ≥ 1 and an integer m, define the generalized Fibonomial coefficient with indices in an arithmetic
progression by {

n

k

}
U ;m

:=
UmU2m . . . Unm

(UmU2m . . . Ukm)(UmU2m . . . U(n−k)m)

with
{
n
0

}
U ;m

=
{
n
n

}
U ;m

= 1. When p = m = 1, we obtain the usual Fibonomial coefficients, denoted by{
n
k

}
F

. When m = 1, we obtain the generalized Fibonomial coefficients, denoted by
{
n
k

}
U ;1
. We will frequently

denote
{
n
k

}
U ;1

by
{
n
k

}
U
.

As an interesting generalization of the binomial coefficients, the Fibonomial coefficients have taken the
interest of several authors (for more details, see [2, 3, 4, 9]).

In a recent paper, Marques and Trojovsky [8] computed various sums of the Fibonomial coefficients with
the Fibonacci and Lucas numbers as coefficients. For example, for positive integers m and n, they showed
that

4m+2∑
j=0

(−1)
j(j−1)

2

{
4m

j

}
F

L2m−j = −
{

4m

4n+ 1

}
F

F4n+1

F2m
,

4m+2∑
j=0

(−1)
j(j+1)

2

{
4m+ 2

j

}
F

L2m+1−j = −
{

4m+ 2

4n+ 3

}
F

F4n+3

F2m+1

and
4m+2∑
j=0

(−1)
j(j−1)

2

{
4m

j

}
F

Fn+4m−j =
1

2
F2m+n

4m∑
j=0

(−1)
j(j−1)

2

{
4m

j

}
F

L2m−j .

The authors of [6, 7] computed some generalized Fibonomial sums with the generalized Fibonacci and
Lucas numbers as coefficients. For nonnegative integers n and m, they showed that

2n+1∑
k=0

{
2n+ 1

k

}
U

V2mk = Pn,m

m∑
k=0

{
2m

2k

}
U

V(2n+1)2k,
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2n∑
k=0

{
2n

k

}
U

U(2m−1)k = Pn,m

m∑
k=1

{
2m− 1

2k − 1

}
U

U(4k−2)n,

where

Pn,m =



n−m∏
k=0

V2k if n ≥ m,

m−n−1∏
k=1

V −12k if n < m.

As double aerated generalized Fibonomial sums in arithmetic progressions, we recall the following results
from [6, 7]: For any positive integers n and m,

n∑
k=0

(−1)k
{

2n+ 1

2k

}
U ;m

= (−1)(
n+1
2 )


n∑
k=1

V 2
mk if m is odd,

n∑
k=1

V2mk if m is even

and

n∑
k=0

(−1)k
{

2n+ 1

2k + 1

}
U ;m

= (−1)(
n
2)


n∑
k=1

V 2
mk if m is odd,

n∑
k=1

V2mk if m is even.

Recently, Kılıç and Prodinger [5] gave a systematic approach to compute certain sums of squares of
Fibonomial coefficients with finite products of the generalized Fibonacci and Lucas numbers as coefficients.
For example, if n is a nonnegative integer and r is an arbitrary integer, then

2n+1∑
k=0

{
2n+ 1

k

}2

U

U2
k+r = U2n+1U2n+1+2r

{
2n

n

}
U ;2

and
2n∑
k=0

{
2n

k

}2

U

U4
k = U2n−1U

2
2nU2n+1

{
2n− 2

n− 1

}
U ;2

.

As binomial sums, there exist not-so-famous double aerated binomial sums given by

∞∑
k=0

(
n

2k

)
(−3)

k
=


(−2)

n
if n ≡ 0 (mod 3),

(−2)
n−1

if n ≡ 1 (mod 3),

(−2)
n−1

if n ≡ 2 (mod 3)

and
∞∑
k=0

(
n

2k + 1

)
(−3)

k
=


0 if n ≡ 0 (mod 3),

(−2)
n−1

if n ≡ 1 (mod 3),
(−1)

n
2n−1 if n ≡ 2 (mod 3).

In this paper, motivated by double aerated generalized Fibonomial and binomial sums mentioned above,
we will compute the triple aerated generalized Fibonomial sums of the form

cn+λ∑
k=0

{
cn+ λ

3k + δ

}
U

U3µk+γ (−1)(
k
2) ,

where c is a nonnegative integer, µ and γ are arbitrary integers, λ and δ are integers such that 0 ≤ λ ≤
3, 0 ≤ δ ≤ 2.

Our approach is as follows. We use the Binet forms

Un =
αn − βn

α− β
= αn−1

1− qn

1− q
and Vn = αn + βn = αn(1 + qn)

2



with q = β/α = −α−2, so that α = i/
√
q where α, β = (p±

√
∆ )/2 and ∆ = p2 + 4.

Throughout this paper we will use the following notations: the q-Pochhammer symbol (x; q)n = (1 −
x)(1− xq) · · · (1− xqn−1) and the Gaussian q-binomial coefficients[

n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

The link between the generalized Fibonomial and Gaussian q-binomial coefficients is{
n

k

}
U ;m

= αmk(n−k)
[
n

k

]
qm

with q = −α−2.

We recall that one version of the Cauchy binomial theorem is given by
n∑
k=0

q

(
k+1
2

)[
n

k

]
q

xk =

n∏
k=1

(1 + xqk),

and Rothe’s formula [1] is

n∑
k=0

(−1)kq

(
k
2

)[
n

k

]
q

xk = (x; q)n =

n−1∏
k=0

(1− xqk).

All the identities we will derive hold for general q, and results about generalized Fibonacci and Lucas
numbers come out as corollaries for the special choice of q.

2. Triple Aerated Fibonomial Sums

As we mentioned before, we compute the generalized Fibonomial sums of the form

cn+λ∑
k=0

{
cn+ λ

3k + δ

}
U

U3µk+γ (−1)(
k
2) ,

where c is a nonnegative integer, µ and γ are arbitrary integers, λ and δ are integers such that 0 ≤ λ ≤ 3
and 0 ≤ δ ≤ 2.

First we note that our experiments show that the parameter c must be 4. After that we thus take c = 4,
that is, we consider the sums of the form

4n+λ∑
k=0

{
4n+ λ

3k + δ

}
U

U3µk+γ (−1)(
k
2) .

In order to compute the claimed generalized Fibonomial sums, first we convert them into q-form and then
compute it by q-analysis and the Rothe identity from classical q-calculus. Then we convert the results in
q-form to the generalized Fibonomial sums to obtain claimed generalized Fibonomial sums.

Throughout this paper we denote the roots of the equation z2 + z + 1 = 0 by w and w, where w is the
complex conjugate of w.

Now we convert the generalized Fibonomial sums into q-form :

4n+λ∑
k=0

{
4n+ λ

3k + δ

}
U

U3µk+γ (−1)(
k
2)

= αγ+λδ+4δn−δ2−1
4n+λ∑
k=0

[
4n+ λ

3k + δ

]
q

α3µk+3λk−6kδ+12kn−9k2 (1− q3µk+γ) (−1)
k(k−1)/2

.

= αγ+λδ+4δn−δ2−1
4n+λ∑
k=0

[
4n+ λ

3k + δ

]
q

α3µk+3λk−6kδ+12kn−9k2 (1− q3µk+γ) (−1)
k(k−1)/2

By ignoring the constant factor, we are interested in to compute the sum

4n+λ∑
k=0

[
4n+ λ

3k + δ

]
q

q−
3
2k(µ+λ−3k−2δ+4n)

(
1− q3µk+γ

)
(−1)

1
2 (3µ+3λ−1)k+kδ

.
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In order to compute the claimed sums in closed form by our approach, we have to have the sign (−1)
k
.

For this, we consider three cases of δ. Before starting to examine the cases, we will note the following result
for further use: For any function f of k, we have that

n∑
k=0

[
n

3k

]
q

f(k) =
1

3

n∑
k=0

[
n

k

]
q

f

(
k

3

)(
1 + wk + wk

)
, (1)

where w is defined as before.

(1) First we start with the case δ = 0. In that case, in order to have the sign (−1)
k
, 3µ+ 3λ− 1 must

be an even integer of the form 2t such that t is an odd integer. Now we examine the following four
subcases:

i) For λ = 0, we obtain the equation 3µ = 2t + 1, where t is an odd integer. Here we see that any
solution µ should be form 4p+ 1 for p ≥ 0. Thus by using (1), we will compute the sums

4n∑
k=0

[
4n

3k

]
q

q−
3
2k(4p+1−3k+4n)

(
1− q3(4p+1)k+γ

)
(−1)

k

=
1

3

4n∑
k=0

[
4n

k

]
q

q(
k
2)−2k(n+p)

(
1− q(4p+1)k+γ

)
(−1)

k (
1 + wk + wk

)
for 0 ≤ p ≤ n− 1.

ii) For λ = 1, we obtain the equation 3µ = 2t − 2. The equation has a unique solution, namely µ = 0
for only t = 1. Thus we will compute the sums

(1− qγ)

4n+1∑
k=0

[
4n+ 1

3k

]
q

q−
3
2k(4n−3k+1) (−1)

k

or ignoring the constant factor and by (1), we will consider

4n+1∑
k=0

[
4n+ 1

3k

]
q

q−
3
2k(4n−3k+1) (−1)

k
=

1

3

4n+1∑
k=0

[
4n+ 1

k

]
q

q(
k
2)−2kn (−1)

k (
1 + wk + wk

)
.

iii) For λ = 2, we obtain the equation 3µ = 2t− 5. For odd t, clearly any solution µ has the form 4p− 1
for p > 0. Thus by using (1), we will compute the sums

4n+2∑
k=0

[
4n+ 2

3k

]
q

q
3
2k(3k−4n−4p−1)

(
1− q3(4p−1)k+γ

)
(−1)

k

=
1

3

4n+2∑
k=0

[
4n+ 2

k

]
q

q(
k
2)−2k(n+p)

(
1− q(4p−1)k+γ

)
(−1)

k (
1 + wk + wk

)
for 0 < p ≤ n− 1.

iv) For λ = 3, we obtain the equation 3µ = 2t − 8. But the equation has no integer solution µ for any
odd integer t. Thus there is no closed form for the sums.

2. As a second main case, we consider the case δ = 1. Then we obtain the equation 3µ + 3λ − 1 = 4t
for all t. In that case, by (1), we will compute the sums

4n+λ∑
k=0

[
4n+ λ

3k + 1

]
q

q−
3
2k(µ+λ−3k+4n−2) (1− q3µk+γ) (−1)

k

=

4n+λ∑
k=0

[
4n+ λ

k + 1

]
q

q−
1
2k(µ+λ−k+4n−2) (1− qµk+γ) (−1)

k (
1 + wk + wk

)
.

In this case we have the following four subcases:
4



i) For λ = 0, we obtain the equation 3µ = 4t+ 1. For all t, clearly any solution µ has the form 4p+ 3
for p ≥ 0. Thus for 0 ≤ p ≤ n− 1, we will compute the sums

4n∑
k=0

[
4n

k + 1

]
q

q(
k
2)−2k(n+p)

(
1− q(4p+3)k+γ

)
(−1)

k
.

ii) For λ = 1, we obtain the equation 3µ = 4t − 2. But the equation has no integer solution µ and so
we have no closed form for the sums.

iii) For λ = 2, we obtain the equation 3µ = 4t − 5 for all t. In that case any solution µ has the form
4p+ 1 for p ≥ 0. Thus we will compute the sum

4n+2∑
k=0

[
4n+ 2

k + 1

]
q

q(
k
2)−2k(n+p)

(
1− q(4p+1)k+γ

)
(−1)

k (
1 + wk + wk

)
for 0 ≤ p ≤ n.

iv) For λ = 3, we obtain the equation 3µ = 4t − 8. But the equation has no integer solution µ and so
we have no closed form for the sums.

3. As the last case, we consider the case δ = 2. To have the sign (−1)
k
, 3µ+ 3λ− 1 must be an even

integer of the form 2t such that t is an odd integer. Now we should examine the following four
subcases:

i) For λ = 0, we obtain the equation 3µ = 2t+ 1, where t is an odd integer. We see that any solution
µ has the form 4p+ 1 for p ≥ 0. Thus for 0 ≤ p ≤ n− 1, by (1) we will compute the sums

4n∑
k=0

[
4n

3k + 2

]
q

q−
3
2k(4p−3k−3+4n)

(
1− q3(4p+1)k+γ

)
(−1)

k

=
1

3

4n∑
k=0

[
4n

k + 2

]
q

q(
k
2)−2k(n+p−1)

(
1− q(4p+1)k+γ

)
(−1)

k (
1 + wk + wk

)
.

ii) For λ = 1, we obtain the equation 3µ = 2t − 2. The equation has a unique solution µ = 0 for only
t = 1. Thus we will compute the sum

(1− qγ)

4n+1∑
k=0

[
4n+ 1

3k + 2

]
q

q−
3
2k(4n−3k−3) (−1)

k

or without constant factor and by using (1), we compute the sums

4n+1∑
k=0

[
4n+ 1

3k + 2

]
q

q−
3
2k(4n−3k−3) (−1)

k
=

1

3

4n+1∑
k=0

[
4n+ 1

k + 2

]
q

q(
k
2)−2k(n−1) (−1)

k (
1 + wk + wk

)
.

iii) For λ = 2, we obtain the equation 3µ = 2t− 5, where t is odd. Any solution µ has the form 4p− 1
for p ≥ 1. Thus for 0 ≤ p ≤ n+ 1,by (1), we will compute the sums

4n+2∑
k=0

[
4n+ 2

3k + 2

]
q

q−
3
2k(4p−3k−3+4n)

(
1− q3(4p−1)k+γ

)
(−1)

k

=
1

3

4n+2∑
k=0

[
4n+ 2

k + 2

]
q

q(
k
2)−2k(n+p−1)

(
1− q(4p−1)k+γ

)
(−1)

k (
1 + wk + wk

)
.

iv) For λ = 3, we obtain the equation 3µ = 2t − 8. But the equation has no integer solution µ and so
we have no closed form for the sums.

In the next section, we will compute the Gaussian q-binomial sums mentioned above and we give related
generalized Fibonomial sums in the last section.
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3. Evaluation of the Gaussian q-binomial Sums

We compute some of the Gaussian q-binomial sums mentioned in the previous section as showcase to
don’t bother the readers. We start with the the case (1.i).

1.i) For 0 ≤ p ≤ n− 1, consider

4n∑
k=0

[
4n

k

]
q

q(
k
2)−2k(n+p)

(
1− q(4p+1)k+γ

)
(−1)

k (
1 + wk + wk

)
=

4n∑
k=0

[
4n

k

]
q

q(
k
2)−2k(n+p) (−1)

k (
1 + wk + wk

)
− 1

3
qγ

4n∑
k=0

[
4n

k

]
q

q(
k
2)+k(2(p−n)+1) (−1)

k (
1 + wk + wk

)
=

4n∑
k=0

[
4n

k

]
q

q(
k
2)−2k(n+p) (−1)

k
+

4n∑
k=0

[
4n

k

]
q

q(
k
2)
(
wq−2(p+n)

)k
(−1)

k

+

4n∑
k=0

[
4n

k

]
q

q(
k
2)
(
−wq−2(p+n)

)k
− qγ

4n∑
k=0

[
4n

k

]
q

q(
k
2)qk(2p−2n+1) (−1)

k

− qγ
4n∑
k=0

[
4n

k

]
q

q(
k
2)
(
−wq(2(p−n)+1)

)k
− qγ

4n∑
k=0

[
4n

k

]
q

q(
k
2)
(
−wq(2(p−n)+1)

)k
,

which, by Rothe’s identity, equals

(q−2(p+n); q)4n +
(
wq−2(p+n); q

)
4n

+
(
wq−2(p+n); q

)
4n

−qγ
((
q2(p−n)+1; q

)
4n

+
(
wq2(p−n)+1; q

)
4n

+
(
wq2(p−n)+1; q

)
4n

)
. (2)

Here if −n ≤ p < n, then

(q−2(p+n); q)4n = 0 and
(
q2(p−n)+1; q

)
4n

= 0

and so the equation (2) is equal to(
wq−2(p+n); q

)
4n

+
(
wq−2(p+n); q

)
4n

− qγ
((
wq2(p−n)+1; q

)
4n

+
(
wq2(p−n)+1; q

)
4n

)
= (1− w)

(
2n+2p−1∏
k=0

(
1− wqk−2p−2n

)) 4n−1∏
k=2n+2p+1

(
1− wqk−2p−2n

)
+ (1− w)

(
2n+2p−1∏
k=0

(
1− wqk−2p−2n

)) 4n−1∏
k=2n+2p+1

(
1− wqk−2p−2n

)
− qγ (1− w)

(
2n−2p−2∏
k=0

(
1− wqk−(2n−2p−1)

)) 4n−1∏
k=2n−2p

(
1− wqk−(2n−2p−1)

)
− qγ (1− w)

(
2n−2p−2∏
k=0

(
1− wqk−(2n−2p−1)

)) 4n−1∏
k=2n−2p

(
1− wqk−(2n−2p−1)

) ,
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which, by some rearrangements, equals

(1− w)

(
2n+2p∏
k=1

(
1− wq−k

))(2n−2p−1∏
k=1

(
1− wqk

))

+ (1− w)

(
2n+2p∏
k=1

(
1− wq−k

))(2n−2p−1∏
k=1

(
1− wqk

))

− qγ (1− w)

(
2n−2p−1∏
k=1

(
1− wq−k

))(2n+2p∏
k=1

(
1− wqk

))

− qγ (1− w)

(
2n−2p−1∏
k=1

(
1− wq−k

))(2n+2p∏
k=1

(
1− wqk

))
. (3)

For p ≥ 0, the equation (3) is equal to

−q(n−p)(2p−2n+1)w−2p+2n−1 (1− w)

 2n+2p∏
k=2n−2p

(
1− wq−k

)(2n−2p−1∏
k=1

1− q3k

1− qk

)

−q(n−p)(2p−2n+1)w−2p+2n−1 (1− w)

 2n+2p∏
k=2n−2p

(
1− wq−k

)(2n−2p−1∏
k=1

1− q3k

1− qk

)

+q(n−p)(2p−2n+1)w−2p+2n−1qγ (1− w)

 2n+2p∏
k=2n−2p

(
1− wqk

)(2n−2p−1∏
k=1

1− q3k

1− qk

)

+q(n−p)(2p−2n+1)w−2p+2n−1qγ (1− w)

 2n+2p∏
k=2n−2p

(
1− wqk

)(2n−2p−1∏
k=1

1− q3k

1− qk

)
.

Thus by combining common statements, the last equation is equal to

q(n−p)(2p−2n+1)

(
2n−2p−1∏
k=1

1− q3k

1− qk

)

×

−w−2p+2n−1 (1− w)

2n+2p∏
k=2n−2p

(
1− wq−k

)
− w−2p+2n−1 (1− w)

2n+2p∏
k=2n−2p

(
1− wq−k

)

+w−2p+2n−1qγ (1− w)

2n+2p∏
k=2n−2p

(
1− wqk

)
+ w−2p+2n−1qγ (1− w)

2n+2p∏
k=2n−2p

(
1− wqk

) .

Since

−w4p+1q(8p+2)n

2n+2p∏
k=2n−2p

(
1− wq−k

)
=

2n+2p∏
k=2n−2p

(
1− wqk

)
,

consequently we derive

4n∑
k=0

[
4n

3k

]
q

q−
3
2k(4p+1−3k+4n)

(
1− q3(4p+1)k+γ

)
(−1)

k

= −1

3
q(n−p)(2p−2n+1) (1− w)

(
q3; q3

)
2n−2p−1

(q; q)2n−2p−1
7



×

(w−2p+2n−1 − q2(4p+1)n+γw2p+2n+1
) 2n+2p∏
k=2n−2p

(
1− wq−k

)

+
(
w2p+2nq2(4p+1)n+γ − w2n−2p

) 2n+2p∏
k=2n−2p

(
1− wq−k

) .
As special case, for p = 0, we have the result

4n∑
k=0

[
4n

3k

]
q

q−
3k
2 (4n−3k+1)

(
1− q3k+γ

)
(−1)

k
= −q−n(2n+1)

(
q3; q3

)
2n−1

(q; q)2n−1

×


(
1− qγ+2n

) (
1 + q2n

)
if n ≡ 0 (mod 3),(

1− qγ+4n
)

if n ≡ 1 (mod 3),
q2n (1− qγ) if n ≡ 2 (mod 3).

For p = γ = 0, we have

4n∑
k=0

[
4n

3k

]
q

q−
3k
2 (4n−3k+1)

(
1− q3k

)
(−1)

k
= −q−n(2n+1)

(
q3; q3

)
2n−1

(q; q)2n−1

{ (
1− q4n

)
if n ≡ 0, 1 (mod 3),

0 if n ≡ 2 (mod 3).

For p = 0 and γ = 1, we have

4n∑
k=0

[
4n

3k

]
q

q−
3
2k(4n−3k+1)

(
1− q3k+1

)
(−1)

k
= −q−n(2n+1)

(
q3; q3

)
2n−1

(q; q)2n−1

×


(
1− q2n+1

) (
1 + q2n

)
if n ≡ 0 (mod 3),(

1− q4n+1
)

if n ≡ 1 (mod 3),
q2n (1− q) if n ≡ 2 (mod 3).

1.ii) Now without constant factor, we consider

4n+1∑
k=0

[
4n+ 1

k

]
q

(−1)
k
q(

k
2)−2kn

(
1 + wk + wk

)
=

4n+1∑
k=0

[
4n+ 1

k

]
q

(−1)
k
q(

k
2)−2kn +

4n+1∑
k=0

[
4n+ 1

k

]
q

(−1)
k
q(

k
2)
(
q−2nw

)k
+

4n+1∑
k=0

[
4n+ 1

k

]
q

(−1)
k
q(

k
2)
(
q−2nw

)k
,

which, by Rothe’s formula, equals

(q−2n; q)4n+1 +
(
q−2nw; q

)
4n+1

+
(
q−2nw; q

)
4n+1

=

4n∏
k=0

(
1− qk−2n

)
+

4n∏
k=0

(
1− wqk−2n

)
+

4n∏
k=0

(
1− wqk−2n

)
. (4)

Since
4n∏
k=0

(
1− wqk−2n

)
= −wn+1

4n∏
k=0

(
1− wqk−2n

)
and (q−2n; q)4n+1 = 0,
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the equation (4) is equal to

4n∏
k=0

(
1− qk−2n

)
+
(
1− wn+1

) 4n∏
k=0

(
1− wqk−2n

)
=

(
1− wn+1

) 4n∏
k=0

(
1− wqk−2n

)
.

Thus we obtain
4n+1∑
k=0

[
4n+ 1

3k

]
q−

1
2 3k(4n−3k+1) (−1)

k
=

1

3
(1− w)

(
1− wn+1

)
w2nq−2n

2−n
(
q3; q3

)
2n

(q; q)2n
.

Consequently we get

4n+1∑
k=0

[
4n+ 1

3k

]
q

q−
k
2 (12n−9k+3) (−1)

k
= q−n(2n+1)

(
q3; q3

)
2n

(q; q)2n

 1 if n ≡ 0 (mod 3),
−1 if n ≡ 1 (mod 3),

0 if n ≡ 2 (mod 3).

1.iii) For 0 < p ≤ n− 1, we give the following result without proof

4n+2∑
k=0

[
4n+ 2

3k

]
q

q−
1
2k(3(4p−1)+6−9k+12n)

(
1− q3(4p−1)k+γ

)
(−1)

k

=
1

3
(1− w) q(n−p+1)(2p−2n−1)

(
q3; q3

)
2n−2p+1

(q; q)2n−2p+1

×

(w−2p+2n+1qγ − w2p+2n+1q−(4p−1)(2n+1)
) 2n+2p∏
k=2n−2p+2

(
1− wqk

)

−
(
w−2p+2n+1 − w2p+2n+1q(4p−1)(2n+1)qγ

) 2n+2p∏
k=2n−2p+2

(
1− wq−k

) .
As a special case, for γ = 0 and p = 1, we have

4n+2∑
k=0

[
4n+ 2

3k

]
q

q−
1
2k(15−9k+12n)

(
1− q9k

)
(−1)

k
= −q−(2n+3)(n+1)

(
q3; q3

)
2n−1

(q; q)2n−1

×


(
1− q4n+1

) (
1− q4n+2

) (
1− q4n+3

)
if n ≡ 0 (mod 3),

q2n
(
q + q2 + 1

) (
1 + q2n+1

) (
1− q6n+3

)
if n ≡ 1 (mod 3),

−q2n
(
q + q2 + 1

) (
1− q8n+4

)
−
(
1− q12n+6

)
if n ≡ 2 (mod 3).

Now we give formulae for the second main case with its subcases:
2.i) For 0 ≤ p ≤ n− 1, we have the following result without proof:

4n∑
k=0

[
4n

3k + 1

]
q

q−
3
2k(4p+3−3k−2+4n)

(
1− q3(4p+3)k+γ

)
(−1)

k

= −1

3
q2p+2n+1q(2p−2n+1)(n−p−1) (1− w)

(
q3; q3

)
2(n−p−1)

(q; q)2(n−p−1)

×

(w2n−2p − w2n+2p−2qγ+(4p+3)(2n−1)
) 2n+2p+1∏
k=2n−2p−1

(
1− wq−k

)

−
(
qγ−(4p+3)w2n−2p − w2n+2p−2q−2n(4p+3)

) 2n+2p+1∏
k=2n−2p−1

(
1− wqk

) .
9



Especially for γ = p = 0, we have the following corollary

4n∑
k=0

[
4n

3k + 1

]
q

q−
3
2k(1−3k+4n)

(
1− q9k

)
(−1)

k
= q−n(2n+1)

(
q3; q3

)
2(n−1)

(q; q)2(n−1)

×


q2n−1

(
1 + q4n−2

) (
1− q4n−1

) (
1−q3
1−q

)
+
(
1− q12n−3

)
if n ≡ 0 (mod 3),

q4n−1
(

1−q3
1−q

) (
1− q4n−3

)
−
(
1− q6n

) (
1 + q6n−3

)
if n ≡ 1 (mod 3),

−q2n−1
(

1−q3
1−q

) (
1− q6n−3

) (
1 + q2n

)
if n ≡ 2 (mod 3).

2.ii) There is no closed formula as mentioned as before.
2.iii) For 0 ≤ p ≤ n, consider

4n+2∑
k=0

[
4n+ 2

k + 1

]
q

q(
k
2)−2k(n+p)

(
1− q(4p+1)k+γ

)
(−1)

k (
1 + wk + wk

)
=

4n+2∑
k=0

[
4n+ 2

k

]
q

q(
k
2)q−k(2p+2n+1)q(2p+2n+1)

(
1− q(4p+1)(k−1)+γ

)
(−1)

k−1 (
1 + wk−1 + wk−1

)
= −q(2p+2n+1)

4n+2∑
k=0

[
4n+ 2

k

]
q

qk(k−1)/2q−k(2p+2n+1)
(

1− q(4p+1)(k−1)+γ
)

(−1)
k (

1 + wk−1 + wk−1
)
.

Now consider the sum just above without constant factor,

4n+2∑
k=0

[
4n+ 2

k

]
q

qk(k−1)/2q−k(2p+2n+1)
(

1− q(4p+1)(k−1)+γ
)

(−1)
k (

1 + wk−1 + wk−1
)

=

4n+2∑
k=0

[
4n+ 2

k

]
q

qk(k−1)/2q−k(2p+2n+1) (−1)
k (

1 + wk−1 + wk−1
)

− qγ−(4p+1)
4n+2∑
k=0

[
4n+ 2

k

]
q

qk(k−1)/2q2k(p−n) (−1)
k (

1 + wk−1 + wk−1
)
,

which, by Rothe’s identity, equals(
q−(2p+2n+1); q

)
4n+2

+ w−1
(
wq−(2p+2n+1); q

)
4n+2

+ w−1
(
wq−(2p+2n+1); q

)
4n+2

− qγ−4p−1
(
q−2(n−p); q

)
4n+2

− qγ−4p−1w−1
(
wq−2(n−p); q

)
4n+2

− qγ−4p−1w−1
(
wq−2(n−p); q

)
4n+2

=

4n+1∏
k=0

(
1− qk−(2p+2n+1)

)
+ w−1

4n+1∏
k=0

(
1− wqk−(2p+2n+1)

)
+ w−1

4n+1∏
k=0

(
1− wqk−(2p+2n+1)

)
− qγ−4p−1

4n+1∏
k=0

(
1− qk−2(n−p)

)
− qγ−4p−1w−1

4n+1∏
k=0

(
1− wqk−2(n−p)

)
− qγ−4p−1w−1

4n+1∏
k=0

(
1− wqk−2(n−p)

)
.
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For 0 ≤ p ≤ n− 1, since (q−(2p+2n+1); q)4n+2 = (q−2(p+n); q)4n+2 = 0, the last equation equals

w−1
4n+1∏
k=0

(
1− wqk−(2p+2n+1)

)
+ w−1

4n+1∏
k=0

(
1− wqk−(2p+2n+1)

)
− qγ−(4p+1)

[
w−1

4n+1∏
k=0

(
1− wqk−2(n−p)

)
+ w−1

4n+1∏
k=0

(
1− wqk−2(n−p)

)]

= w−1 (1− w)

(
2n+2p∏
k=0

(
1− wqk−(2p+2n+1)

)) 4n+1∏
k=2n+2p+2

(
1− wqk−(2p+2n+1)

)
+ w−1 (1− w)

(
2n+2p∏
k=0

(
1− wqk−(2p+2n+1)

)) 4n+1∏
k=2n+2p+2

(
1− wqk−(2p+2n+1)

)
− qγ−(4p+1)w−1 (1− w)

(
2n−2p−1∏
k=0

(
1− wqk−2(n−p)

)) 4n+1∏
k=2n−2p+1

(
1− wqk−2(n−p)

)
− qγ−(4p+1)w−1 (1− w)

(
2n−2p−1∏
k=0

(
1− wqk−2(n−p)

)) 4n+1∏
k=2n−2p+1

(
1− wqk−2(n−p)

) ,

which, by some arrangements, equals

q(2p−2n−1)(n−p)w2n−2p−1 (1− w)

 2n+2p+1∏
k=2n−2p+1

(
1− wq−k

)(2n−2p∏
k=1

1− q3k

1− qk

)

+q(2p−2n−1)(n−p)w2n−2p−1 (1− w)

 2n+2p+1∏
k=2n−2p+1

(
1− wq−k

)(2n−2p∏
k=1

1− q3k

1− qk

)

−q(2p−2n−1)(n−p)w2n−2p−1qγ−(4p+1) (1− w)

 2n+2p+1∏
k=2n−2p+1

(
1− wqk

)(2n−2p∏
k=1

1− q3k

1− qk

)

−q(2p−2n−1)(n−p)w2n−2p−1qγ−(4p+1) (1− w)

 2n+2p+1∏
k=2n−2p+1

(
1− wqk

)(2n−2p∏
k=1

1− q3k

1− qk

)

= (1− w) q(2p−2n−1)(n−p)

(
2n−2p∏
k=1

1− q3k

1− qk

)

×

w2n−2p−1
2n+2p+1∏

k=2n−2p+1

(
1− wq−k

)
− w2n−2p

2n+2p+1∏
k=2n−2p+1

(
1− wq−k

)

−qγ−(4p+1)w2n−2p−1
2n+2p+1∏

k=2n−2p+1

(
1− wqk

)
+ qγ−(4p+1)w2n−2p

2n+2p+1∏
k=2n−2p+1

(
1− wqk

) .
Since

−w4j+1q(4j+1)(2n+1)

2n+2j+1∏
k=2n−2j+1

(
1− wq−k

)
=

2n+2j+1∏
k=2n−2j+1

(
1− wqk

)
,
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−w4j+1q−(4j+1)(2n+1)

2n+2j+1∏
k=2n−2j+1

(
1− wqk

)
=

2n+2j+1∏
k=2n−2j+1

(
1− wq−k

)
,

consequently we get

4n+2∑
k=0

[
4n+ 2

3k + 1

]
q

q−
3
2k(4p+1−3k+4n)

(
1− q3(4p+1)k+γ

)
(−1)

k

= −1

3
q2p+2n+1q(2p−2n−1)(n−p) (1− w)

(
q3; q3

)
2(n−p)

(q; q)2(n−p)

×

(w2n−2p−1 − w2n+2p+1q2n(4p+1)+γ
) 2n+2p+1∏
k=2n−2p+1

(
1− wq−k

)

+
(
w2n+2p+1q−(4p+1)(2n+1) − qγ−(4p+1)w2n−2p−1

) 2n+2p+1∏
k=2n−2p+1

(
1− wqk

) .
For γ = p = 0, we have the following corollary

4n+2∑
k=0

[
4n+ 2

3k + 1

]
q

q−
3
2k(4n−3k+1)

(
1− q3k

)
(−1)

k
= q−n(2n+1)

(
q3; q3

)
2n

(q; q)2n

×


(
1 + q2n+1

) (
1− q2n

)
if n ≡ 0 (mod 3),

−
(
1− q4n+1

)
if n ≡ 1 (mod 3),

(1− q) q2n if n ≡ 2 (mod 3).

2.iv) For the case, there is no closed formula as mentioned as before.

Similar to the above results, we give the following results without proof.

3.i) For 0 ≤ p ≤ n,
4n∑
k=0

[
4n

3k + 2

]
q

q−
3
2k(4p+1−3k−4+4n)

(
1− q3(4p+1)k+γ

)
(−1)

k

= −1

3
q4p+4n−1q(n−p)(2p−2n+1)

(
q3; q3

)
2n−2p−1

(q; q)2n−2p−1

×

(wn−p (1− w) + wn+p−1 (1− w) q2(n−1)(4p+1)+γ
) 2n+2p∏
k=2n−2p

(1− wq−k)

−
(
qγ−2(4p+1)wn−p (1− w) + wn+p−1 (1− w) q−2n(4p+1)

) 2n+2p∏
k=2n−2p

(1− wqk)

 .
Especially for γ = p = 0, we get

4n∑
k=0

[
4n

3k + 2

]
q

q−
3
2k(−3k−3+4n)

(
1− q3k

)
(−1)

k

= q(2n−1)(1−n)

(
q3; q3

)
2n−1

(q; q)2n−1

 q2n−2
(
1− q2

)
if n ≡ 0 (mod 3),(

1− q2n−2
) (

1 + q2n
)

if n ≡ 1 (mod 3),
−
(
1− q4n−2

)
if n ≡ 2 (mod 3).
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3.ii)

4n+1∑
k=0

[
4n+ 1

3k + 2

]
q

q−
3
2k(−3k−3+4n) (−1)

k
= q−(2n−1)(n−1)

(
q3; q3

)
2n

(q; q)2n

 0 if n ≡ 0 (mod 3),
1 if n ≡ 1 (mod 3),
−1 if n ≡ 2 (mod 3).

3.iii) For 0 < p ≤ n+ 1,

4n+2∑
k=0

[
4n+ 2

3k + 2

]
q

q−
3
2k(4p−1+2−3k−4+4n)

(
1− q3(4p−1)k+γ

)
(−1)

k

= −1

3
q4n+4p−1q−(2n−2p+1)(n−p+1)

(
q3; q3

)
2n−2p+1

(q; q)2n−2p+1

×

(w2n−2p−1(1− w) + qγ+(4p−1)(2n−1)w2n+2p−2(1− w)
) 2n+2p∏
k=2n−2p+2

(1− wq−k)

−
(
qγ−8p+2w2n−2p−1(1− w) + q−(4p−1)(2n+1)w2n+2p−2(1− w)

) 2n+2p∏
k=2n−2p+2

(1− wqk)

 .
Especially for γ = 0 and p = 1, we get

4n+2∑
k=0

[
4n+ 2

3k + 2

]
q

q−
3
2k(−3k+4n)

(
1− q9k

)
(−1)

k

= −q−n(2n+1)
(
1− q2n

) (
1− q2n+1

) (
1− q2n+2

) (
1 + q6n−3

)
×
(
q3; q3

)
2n−1

(q; q)2n−1

 −1 if n ≡ 0 (mod 3),
1 if n ≡ 1 (mod 3),
0 if n ≡ 2 (mod 3).

3.iv) There is no closed formula as mentioned as before.

4. Triple aerated Generalized Fibonomial Sums

As corollaries of our results, we present sums formulae including generalized Fibonomial coefficients. From
(1.i), we derive the generalized Fibonomial-Fibonacci-Lucas sums:

1.
4n∑
k=0

{
4n

3k

}
U

U3k (−1)(
k
2) = (−1)

n+1

(
2n−1∏
t=1

U3t

Ut

){
U4n if n ≡ 0, 1 (mod 3),

0 if n ≡ 2 (mod 3).

2.

4n∑
k=0

{
4n

3k

}
U

U3k+1 (−1)(
k
2) = (−1)

n+1

(
2n−1∏
t=1

U3t

Ut

) V2nU2n+1 if n ≡ 0 (mod 3),
U4n+1 if n ≡ 1 (mod 3),

1 if n ≡ 2 (mod 3).

From (1.ii), we derive the generalized Fibonomial-Fibonacci sum :

4n+1∑
k=0

{
4n+ 1

3k

}
U

(−1)(
k
2) = (−1)

n

(
2n∏
t=1

U3t

Ut

) 1 if n ≡ 0 (mod 3),
−1 if n ≡ 1 (mod 3),

0 if n ≡ 2 (mod 3).
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From (1.iii), we derive the generalized Fibonomial-Fibonacci-Lucas sums :

4n+2∑
k=0

{
4n+ 2

3k

}
U

U9k (−1)(
k
2) = (−1)

n+1

(
2n−1∏
t=1

U3t

Ut

) −∆U4n+1U4n+2U4n+3 if n ≡ 0 (mod 3),
−U3U6n+3V2n+1 if n ≡ 1 (mod 3),
U3U8n+4 + U12n+6 if n ≡ 2 (mod 3),

where ∆ is defined as before.
From (2.i), we derive the generalized Fibonomial-Fibonacci-Lucas sum :

4n∑
k=0

{
4n

3k + 1

}
U

U9k (−1)
1
2k(k−1) = (−1)

n+1

(
2n−2∏
t=1

U3t

Ut

) U4n−1V4n−2U3 − U12n−3 if n ≡ 0 (mod 3),
U3U4n−3 + U6nV6n−3 if n ≡ 1 (mod 3),
−U3V2nU6n−3 if n ≡ 2 (mod 3).

From (2.iii), we derive the generalized Fibonomial-Fibonacci-Lucas sum :

4n+2∑
k=0

{
4n+ 2

3k + 1

}
U

U3k (−1)(
k
2) = (−1)

n

(
2n∏
t=1

U3t

Ut

) U2nV2n+1 if n ≡ 0 (mod 3),
−U4n+1 if n ≡ 1 (mod 3),

1 if n ≡ 2 (mod 3).

From (3.i), we derive the generalized Fibonomial-Fibonacci sum :

4n∑
k=0

[
4n

3k + 2

]
U

U3k (−1)
1
2k(k−1) = (−1)

n

(
2n−1∏
t=1

U3t

Ut

) V1 if n ≡ 0 (mod 3),
U2n−2V2n if n ≡ 1 (mod 3),
−U4n−2 if n ≡ 2 (mod 3).

From (3.ii), we derive the generalized Fibonomial-Fibonacci sums corollary as a special case:

4n+1∑
k=0

{
4n+ 1

3k + 2

}
U

(−1)(
k
2) = (−1)

n+1

(
2n∏
t=1

U3t

Ut

) 0 if n ≡ 0 (mod 3),
1 if n ≡ 1 (mod 3),
−1 if n ≡ 2 (mod 3).

From (3.iii), we derive the generalized Fibonomial-Fibonacci-Lucas sum :

4n+2∑
k=0

{
4n+ 2

3k + 2

}
U

U9k (−1)(
k
2) = (−1)

n

(
2n−1∏
t=1

U3t

Ut

) U3U8n−2 + U6n+3V6n−3 if n ≡ 0 (mod 3),
U6n+3V6n−3 − U3U4n−4 if n ≡ 1 (mod 3),

U3U6n−3V2n+1 if n ≡ 2 (mod 3).

5. Conclusions

In this paper, we have considered triple aerated generalized Fibonomial sums with a general Fibonacci
factor. There would not be any difficulty when one take a general Lucas number instead of the general
Fibonacci number as a factor.
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[7] E. Kılıç, H. Prodinger, I. Akkus, H. Ohtsuka, Formulas for Fibonomial Sums with generalized Fibonacci and Lucas coeffi-

cients, The Fibonacci Quarterly, 49 (4) (2011), 320–329.
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