SOME GAUSSIAN BINOMIAL SUM FORMULZE WITH
APPLICATIONS
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ABSTRACT. We introduce and compute some Gaussian g-binomial sums for-
mulze. In order to prove these sums, our approach is to use g-analysis, in
particular a formula of Rothe, and computer algebra. We present some appli-
cations of our results.

1. INTRODUCTION

Let {U,} and {V,,} be generalized Fibonacci and Lucas sequences, respectively,
whose the Binet forms are
n __ n 1 _ n
U, = 7(1&_? :a”*171 _qq and V,=a"+8"=a"(1+4¢")
with ¢ = B/a = —a~2, so that a = i/\/q.

When o = 1+2\/g (or equivalently ¢ = (1—+/5)/(1++/5) ), the sequence {U, } is
reduced to the Fibonacci sequence {F),} and the sequence {V,,} is reduced to the
Lucas sequence {L,}.

When a = 1+ /2 (or equivalently ¢ = (1 —+/2)/(1 + v/2)), the sequence
{U,} is reduced to the Pell sequence {P,} and the sequence {V;,} is reduced to the
Pell-Lucas sequence {Q}.

Throughout this paper we will use the following notations: the g-Pochhammer
symbol (z;¢), = (1 —2)(1 —zq)...(1 —2¢" 1) and the Gaussian g-binomial coef-

ficients
m _ (@*:0°)n
k],  (¢%¢)k(q% a7 ) n—k

The z = 1 case will be denoted by {Z] .

Furthermore, we will use generalized Fibonomial coefficients

{n} _ UntUmn—1yt - - Utn—k41)¢
k Ut UtUQt...Ukt

with {S}U’ , = 1 where U, is the nth generalized Fibonacci number.

In the special case t = 1, the generalized Fibonomial coefficients are denoted
by {Z}U When U,, = F,, the generalized Fibonomial reduces to the Fibonomial
coefficients denoted by {Z} I

n - FnFn,1 .. .Fn,]ﬁq
ko FF...F,
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Similarly, when U,, = P,,, the generalized Fibonomial reduces to the Pellnomial
coefficients denoted by {Z} P

{n} _ Pn,Pn—l--~Pn—k+1
P

k PP Py

The link between the generalized Fibonomial and Gaussian ¢-binomial coeffi-

cients is
n __th(n—k) ["} : _ -2
=« with ¢=—a™“.
{k}U,t k1,

For the reader’s convenience and later use, we recall Rothe’s formula [1, 10.2.2(c)]:

k=0

We can refer to [2, 3, 4, 5, 6, 7, 8] for various sums of Gaussian g-binomial
coefficients and sums of generalized Fibonomial sums with certain weight functions.
Recently, the authors of [8, 7] computed certain Fibonomial sums with generalized
Fibonacci and Lucas numbers as coefficients. For example, if n and m are both
nonnegative integers, then

2 (2n " (2m — 1
Z { k }U(Qm—l)k: = Pn,m Z { 2k — 1 }U(4k:—2)n7
k=0 k=1
2n+1 m
2n+1 2m
Z { k }Uka = Pn,m Z { 2%k }U(2n+1)2k7
k=0 k=0
2n m
2n 2m —1
> { I }V(zmm =Pom Y { ok — 1 }V(4k2)m
k=0 k=1
2n+1 m
2n+1 2m
Z { i }V2mk =P,m Z { 2%k }V(2n+1)2k,
k=0 k=0
where
Vag if n> m,
Pom = m—n-1
[1 Vo' if n<m;
k=1

alternating analogues of these sums were also evaluated.

Recently Kilig and Prodinger [3] computed the following Gaussian g-binomial
sums with a parametric rational weight function: For any positive integer w, any
nonzero real number a, nonnegative integer n, integers ¢ and r such that t +n >0
and r > —1,

(—1)iq(2")+it

S G

j=0

—ata - (_1)j q
a (q’Q)”<Z(qw;qw

= ); (@¥:q"),_; (ag“7:q), .y

w(jgl)ftwj
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t—r—1 . .
Z n 4+ t—1— ” rw i
* (_1)T+1 [ n j] { r j} qw( ;I)HJ ! aj)
q qv

Jj=0
In this paper we derive some Gaussian g-binomial sums. Then we present some
applications of our results.

2. THE MAIN RESULTS
We start with our first result:

Theorem 1. For anyn > 1,

k=1 Ut
Proof. Let
R 2n | ape-1) (1 ok
Thus
. 2n | 1t —k
S—k_z_: [n+k]q2 (1—¢")
_ Xn: 2n q%k(kq) (qk 1) - _g
= n+ k ’
so S =0. Let
_ - 20 | ipt—1) (1 ok
Fom= $5 [0

We need —F'(n,0) to evaluate our sum. Define
2n—1
G = (1 — " m(m+1)/2.
() = (1) 27 g

Then we have
G (n,m) = F(n,m),
which follows from
2n 1
G -G —1) = zm(m=1) (1 — ¢g").
(o) = Gl =1 = | 3 Takmnd 1= qn)
Therefore our answer is
2n —1
~F(0.0) = ~G(n.0) = (1= [ ]

as claimed.
The Fibonacci corollary follows by first replacing ¢ by ¢* and then translating.
O
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1—
1+

S

For example, when ¢ = 1 and o = 1 4+ /2 (or equivalently ¢ =
the following Pellnomial-Pell sum identity:

k=1

), we have

S

S

When t =3 and a = 1+T\/3 (or equivalently ¢ = 1_7_ \/2)7 then we have the following

Fibonomial-Fibonacci sum identity:

" ( 2n K on —1
Z { k} (_1)(2) F3, = an{ } )
o\t R s n Jrg3

Our second result is:

Theorem 2. For all n such that 2n — 1 > r we have

= 2n EL(E2—k(2r+1 2r+1 2n
Z 1) o3 ( @r+1) (1 4 gk 92r
Pt [n—i— k‘] (=174 (1+4") n|’

and its generalized Fibonomial-Lucas corollary:
B I SEIE S S L g
k=1 n+ k U,t n U,t
Proof. Define

Then we write

and so

2n - 2n 1p(n_ 2r+1
2 22T+1 — _1 k k(k (27”+1)) 1 k .
s [ = 30 2 e

=—n

Consider

= Itk
2n 9
_ { n] (—1)Fn g3 =) (kn—(2r41)) k—n
Lk
n_—n n24n(artl) S 2n k (k> —n-ryk
= (-1)"z""q 2 Z[k}(—l)w(zq )

k=0
= (=) g2 )T (g ),

according to formula 10.2.2(c) (Rothe’s formula) in [1]. In order to obtain our
claimed sum S, we use this formula for z = 1,¢,¢?,...,¢*"T!. Hence they are all 0
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provided that r < 2n — 1. Therefore

[ 2n E Lp(h— 2r+1 2n
71 3 ( (2T+1)) 1 k — 7227“
S| vt (1+4") "1,
k=1
as claimed. O
We can now replace ¢ by ¢' to obtain some Fibonomial type corollaries.
As an example, when t = 3, r = 2 and o = 1+T\/5 (or equivalently ¢ =

then we have the following Fibonomial-Lucas sum identity:

n

2} e R T

k=1
Our third result is a list of formulae that can be obtained automatically by using
the g-Zeilberger algorithm, in particular the version that was developed at the Risc
center in Linz [9].

Theorem 3. Forn >1
n
N | 1pe— X s 20 —1
S I (R D P— —a-a|" .
n g\ 2 Hj:1(1+qnfj) n

k=0
and the polynomials Xy are getting more and more involved.

We give a list of the first few:
Xo=1,
X1=2+q+q"+2¢"",
Xo=2+42¢+¢* +2¢" + ¢*" +3¢" " + 3¢ + 2¢" 0 4+ 2472 4 2473,
X3=2+2¢+2¢°+¢°
+2¢" +2¢%" + @ 4 4" F 4 4 53T 4 3¢MT 4 PP 4 2451
4 q1+2n + 3q2+2n + 5q3+2n 4 4q4+2n + 4q5+2n + 2q6+2n
+ 2q3+3n + 2q5+3n + 2(]6-"-3n7
X4 =2+2¢+2¢" +2¢° +¢"°
420" 4 247" + 2¢°" 4 ¢ 4 41T 4+ 45T 4+ 63T + 61T 45T
4 3q6+n + 3q7+n + q8+n 4 q9+n + 2q10+n
=+ 2q1+2n + 4q2+2n + 7q3+2n + 7q4+2n + 10q5+2n + 7q6+2n + 7q7+2n
4 4q8+2n 4 2q9+2n 4 2q10+2n
=+ q1+3n 4 q2+3n + 3q3+3n + 3q4+3n + 4q5+3n + 6q6+3n + 6q7+3n
4 4q8+3n 4 4q9+3n 4 2q10+3n
+ 2q4+4n + 2q7+4n + 2q9+4n + 2q10+4n.

As an example, we state the general Fibonomial-Lucas-Fibonacci instance for b = 1:

n Wymin) + (=1) Vin1) ) U,
2n 1 _ t(n+1) t(n—1) ) Ynt (2n — 1
§ { } ( 1)étk(k S)USkt ( ) { } )
Ut Ut

i \ntk (=) Vin_1ye n
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For example, when o = (1 + \/5) /2 (or equivalently g = ;ﬁ) and ¢t = 1, then

we have the following Fibonomial-Lucas-Fibonacci sum identity:

i 2n (—1)3F0=3 py, — _ LngeFy [2n -1
n+k)p L n P

k=0 n—1
We give another Fibonomial-Lucas-Fibonacci corollary (the instance b = 2);
more complicated ones can be obtained by replacing g by ¢' and taking larger b’s.

z": {n?k}U (& s,

k=0
= (2Vapt1 + Van—3 — 2Vani3 + 3 (=1)" V1 — 2(—=1)" V3)

y U, 2n —1
anlvn72 n U-

Note that 2Vay, 11+ Van—3 —2Va,4+3 could still simplified a bit using the recursion,
but the recursion depends on a.
For example, when o = (1 + \/5) /2

Z{ 2n }F )8 By = Fp (Lons1 —4Lgn —5(—1)") {Qn - 1}F.

=0 n + k Lnfan,Q n

Now we state our next result:

Theorem 4. Forn >1

n

kzzo Lﬁ:—lk] PELIGD) (1- qk)3 -9 [2:_13] (1 ; q) (1—q") (1— ¢ 1),

and its Fibonomial-Fibonacci corollary

~ 2n 1 _ 2n —3
Z{ } (—1)2* =3 g3 — (—1)t2UtUmUt(2n1){ } .
U,t

= n+ k Uit n—1
Proof. One can produce a proof similar to our first theorem, but we gain no insight
from it; and a computer can prove it without any effort. ([l
For example, if we take ¢ = 5 and a = 1+T\/g (or equivalently ¢ = i;g), then

we have the following Fibonomial-Fibonacci sum identity :

n

2n 1k(k—3) 3 {2n—3}
—1)? F3 =2 FysFsn Fsan_1)-
O I B Y

Now we state our next results including the 5** and 7" powers of (1 — qk):

Theorem 5. Forn >1

n+k ¢(1+q (A +¢"?) no |

k=0
and its Fibonomial-Fibonacci corollary

zn: { 2n } ( 1)t(§) s (_1)t 202U, (Ut(n+1) +3 (_1)t Ut(n—l)) {Qn — 1}
i \ntk]y, ”“ Vitn—1)Ve(n-2) o Jus
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Proof. Again, this is best done by a computer. O

For example, whent =1 and a = (1 +5 ) /2, we get the following Fibonomial-
Fibonacci corollary:

n 2 -
Z { 2n } (_1)(3) S - 2F7F,_3 {2n 1} .
=0 n -+ k F Ln_an_g n F

We also give the next instance; after that, the terms get too involved:

Theorem 6. Forn > 1
Zn: 2n gER=T) (1 = qk)7 _ 2(1 - ¢)* (1 - ¢")” 2n —1
—n+k SA+¢ )1 +¢"2) (1 +¢"3) [ n
x (1 +4q + 9¢* + 10¢°> 4 10¢*™ 4 9¢°" 1 + 44> 2
+ q2n+3 _ 5qn _ 19qn+1 _ 19qn+2 _ 5qn+3)

and its Fibonomial-Fibonacci-Lucas corollary

- 2n Lk(k—7) 777

—1)2 U,

Z {n + k’}U (=1) k
= (Vanss = 4Vans1 + 9Van 1 = 10V 5 = 5(=1)" Vs + 19 (=1)" 1A

y 2U03U2 2n —1
5Vn—1Vn—2Vn—3 n U.

For example, when a = (1 + \/5) /2, we get

Z":{ 2n } (1) 3R 7 _ 2F2(Lop—2 +4Lop—a — (—1)"){2n— 1} .
—\ntkfp k 5Ln—1Ln—2Ln 3 n fn
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