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Abstract

The deterministic stability of a model of Hepatitis C which includes a term defining the effect

of immune system is studied on both local and global scales. Random effect is added to the

model to investigate the random behavior of the model. The numerical characteristics such

as the expectation, variance and confidence interval are calculated for random effects with

two different distributions from the results of numerical simulations. In addition, the compli-

ance of the random behavior of the model and the deterministic stability results is examined.

Introduction

Hepatitis C is an infectious liver disease. The virus which causes this disease was identified in

1989 but the worldwide presence of the virus shows that it has been active for a much longer

period. It is estimated that around 150 million people are chronically infected by the World

Health Organization (WHO) reports [1]. Hepatitis C Virus (HCV) causes 3-4 million new

infections per year. HCV infections occur in two basic stages, acute and chronic infections.

The terms ‘acute’ and ‘chronic’ refer to the duration of the disease and not the severity. The ill-

ness can range from a mild illness which lasts less than a month to serious infections which

can last several months, and even a lifetime in some cases [1]. The acute stage of the disease is

largely asymptomatic and about one fifth of these cases resolve spontaneously due to adequate

response to the HCV by the immune system. Less than one fifth of acute infections show mild

symptoms like fatigue and jaundice. Infections that last up to 6 months are called ‘acute’ and

acute infections have 1% mortality rate [2, 3]. Those that last longer are called ‘chronic’. Nearly

80% of HCV infections develop into the chronic stage which can last asymptomatic for more

than 20 years [2, 4], [1]. The long period of asymptomatic infections makes the diagnosis of

the disease difficult therefore hepatitis C is sometimes called the ‘silent epidemic’ [2, 3]. In

about 30 years, more than one fifth of the infected develop cirrhosis and 1%-3% develop lung

cancer. More than 300,000 people die yearly from diseases that are related with HCV [1, 2].

Stability analysis of the equilibrium points of the system provides a better understanding of

the behavior of the system in a long period of time without the need to find the solutions of the

model. Local stability of an equilibrium point suggests that if the system is close to this point, it
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will eventually reach the equilibrium state at this point. The global stability of an equilibrium

point suggests that the system will reach equilibrium state at this point, whether it is close to

this point or not [5]. Considering models in medicine, biology and etc., global stability of equi-

librium points can indicate extinction or persistence of the disease according to the equilib-

rium point under consideration [6]. Local stability analysis examines the effects of small

variations in each of the variables on the results of the model. Hence, a motivation for the ran-

dom analysis of the model containing random effects in the parameters is to visualize the ran-

dom behavior of the model, which can be linked with the stability of the equilibrium points

under small changes in the conditions of the system.

The behavior of the solution of Hepatitis C virus model is examined by Ahmed and El-Saka

[7]. The model in [7] is a fractional model which compares the results of the system for various

powers of differentiation. Fractional calculus, with the use of its memory effect property, may

provide useful information on the results of the model. However, we concentrate on the sys-

tem of ordinary differential equations (α = 1), since we want to add random effects to the

parameters and investigate the randomness of the event. Similar dynamical modeling studies

can also be reviewed for an investigation of the framework of disease transmission models con-

sisting of ordinary differential equations [8–12]. It should also be noted that the use of spatial

effects may also provide useful results for analyzing Hepatitis C transmission dynamics [13–

16]. These models use mathematical tools to guide and enhance studies in medicine, biology

and etc. and with the addition of random effects, we intend to extend these analyses with the

addition of a statistical point of view.

The components of the basic three-component model are uninfected hepatocytes, infected

hepatocytes and the virus, which are denoted by T(t), I(t) and V(t), respectively. The flowchart

of this model can be visualized as Fig 1, which has been obtained by a modification of the flow-

chart in [17].

dT
dt
¼ s � dT � ð1 � ZÞbVT;

dI
dt
¼ ð1 � ZÞbVT � dI 1 �

I
c2

� �

;

dV
dt

¼ ð1 � �pÞpI � cV:

ð1Þ

The parameters of the model describe the rates of change in the uninfected hepatocytes,

infected hepatocytes and virus during treatment. s describes the constant production rate of

Fig 1. Flowchart of Model (1).

https://doi.org/10.1371/journal.pone.0181571.g001
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uninfected hepatocytes per cell, while d and β describe their constant death and infection rates

per cell. δ is the constant rate of death per cell for infected hepatocytes. p is the constant rate of

production for viral particles per infected hepatocyte and c is their constant clearance rate per

virion. The treatment effects are included in the model with two parameters �p and η, which

describe the virion production blockage and new infection reduction respectively. For exam-

ple, �p = 0.95 indicates 95% efficacy in blocking of virion production. c2 describes the rate of

immunity response.

These parameters must be assigned values for the simulations of the Model (1). Values and

descriptions of the parameters of model, which were obtained from [7] are explained in

Table 1. Simulations are done with these parameter values above and the initial conditions T
(0) = 2.4 × 106, I(0) = 2.0 × 106 and V(0) = 4.0 × 105. Study motivation of this work is covered

by the earlier study of Merdan and Khaniyev [18].

Basic properties of the model

Firstly, the basic reproduction number and some properties of the model are examined. The

disease-free equilibrium (DFE) for the System (1) is E0 ¼ s
d ; 0; 0
� �

. The basic reproduction

number is used for the analysis of the spread and control of the disease mathematically. It indi-

cates whether the disease will spread through the community or be taken under control, which

is very useful information. We will use the formula from [17, 19–22] to calculate this number

for System (1). A similar study [23] can also be reffered to for the calculation of the equilibrium

points of a similar model for HCV transmission. Let X = [I, V, T]T, then for System (1)

dX
dt
¼ FðXÞ � WðXÞ;

FðXÞ ¼

ð1 � ZÞbVT þ
dI2

c2

0

0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;WðXÞ ¼

dI

� ð1 � �pÞpI þ cV

� sþ dT þ ð1 � ZÞbVT

2

6
6
6
4

3

7
7
7
5

:

Jacobian of F at DFE and Jacobian of W are obtained respectively as follows: A

Table 1. Values and descriptions of the parameters of the model [7].

Parameter Value Description

c 6 Virion clearance rate

d 0.0026 Uninfected hepatocyte death rate

β 2.25 × 10−7 Uninfected hepatocyte infection rate

δ 0.26 Infected hepatocyte death rate

s 26000 Uninfected hepatocyte production rate

�p 0.99 Efficacy of treatment (Blocking virion production)

η 0.95 Efficacy of treatment (Reducing new infections)

p 2.9 Virion production rate

c2 5 × 106 Rate of immunity response

https://doi.org/10.1371/journal.pone.0181571.t001
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straightforward calculation yields

FðXÞ ¼
0
ð1 � ZÞbs

d

0 0

2

6
4

3

7
5;VðXÞ ¼

d 0

� ð1 � �pÞp c

2

4

3

5 :

The inverse of V is used with F(X) to obtain;

V � 1ðXÞ ¼
1

dc

c 0

ð1 � �pÞp d

2

4

3

5 ) FV � 1 ¼

ð1 � ZÞð1 � �pÞpsb
dcd

ð1 � ZÞbs
cd

0 0

2

6
4

3

7
5:

The spectral Radius R0 is R0 ¼ r½FV � 1� ¼
ð1� ZÞð1� �pÞpsb

dcd , as found in [20]. [24] can also be referred

to for the calculation of the basc reproduction number.

Proposition 1. If R0 > 1, then there exists positive equilibria for the System (1) and one of

these is the endemic equilibrium E1 ¼ ðT�
1
; I�

1
;V�

1
Þ, where T�

1
; I�

1
;V�

1
can be defined as

T�
1
¼ c

A
d

B 1 �
I�
1

c2

� �h i
, I�

1
¼ � Dþ

ffiffiffiffiffiffiffiffiffi
D2 � 4E
p

2
, V�

1
¼

BI�
1

c whereas A = (1 − η)β, B = (1 − �p)p,

D ¼ c2

d

s
R0c2
� d

� �
, E ¼ 1 � 1

R0

� �
sc2

d
.

Proof. Let all the equations of System (1) equal to zero, then

s � dT � ð1 � ZÞbVT ¼ 0;

ð1 � ZÞbVT � dI 1 �
I
c2

� �

¼ 0;

ð1 � �pÞpI � cV ¼ 0:

ð2Þ

From the last equation in Eq (2), we see that V ¼ ð1� �pÞpI
c , when c 6¼ 0. Replacing V in the second

equation of Eq (2), we find dI 1 � I
c2

� �
¼ ð1 � ZÞb

ð1� �pÞpI
c T. Hence T is obtained from this

expression as

T ¼
dc 1 �

I
c2

� �

ð1 � ZÞð1 � �pÞpb
:

ð3Þ

Substituting Eq (3) into the first equation of Eq (2), we get

f ðIÞ ¼ s � d
dc 1 �

I
c2

� �

ð1 � ZÞð1 � �pÞpb
� ð1 � ZÞb

ð1 � �pÞpI
c

dc 1 �
I
c2

� �

ð1 � ZÞð1 � �pÞpb

¼ s �
dcd 1 �

I
c2

� �

ð1 � ZÞð1 � �pÞpb
� dI 1 �

I
c2

� �

¼ 0:

f(I) is a quadratic function, and notice that

f
s
d

� �
¼ s � 1 �

s
dc2

� �
s

R0

� d
s
d

1 �
s

dc2

� �

> 0

f ð0Þ ¼ s �
dcd

ð1 � ZÞð1 � �pÞpb
¼ s �

s
R0

¼ s
R0 � 1

R0

� �

> 0

A random model of HCV
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where R0 > 1. Thus, f(I) = 0 has positive form and two roots. Therefore, the endemic equilibri-

ums of the System (1) are given by

E1;2ðT�
1;2
; I�

1;2
;V�

1;2
Þ ¼

c
A

d

B
1 �

I�
1;2

c2

� �� �

;
� D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 4E
p

2
;
BI�

1;2

c

 !

with positive equilibrium E1 and A = (1 − η)β, B = (1 − �p)p, D ¼ c2

d

s
R0c2
� d

� �
,

E ¼ 1 � 1

R0

� �
sc2

d
. Since f ð0Þ ¼ s R0 � 1

R0

� �
< 0 when R0 < 1 and s> 0, the equation f(I) = 0 does

not have any positive roots. However it can be seen that I�
2

becomes negative for every value of

R0, thus the equilibrium point E2 is biologically irrelevant and should be ignored.

Local stability

In this part of the study, the local stability of the model is investigated for the equilibrium

points.

Theorem 1. For the disease-free equilibrium point E0 of the System (1), we have the

following:

1. E0 is locally asymptotically stable if R0� 1.

2. E0 is unstable if R0 > 1.

Proof. When evaluated at the point E0, System (1) has the Jacobian matrix

JðE0Þ ¼ J0 ¼

� d 0 �
ð1� ZÞbs

d

0 � d
ð1� ZÞbs

d

0 ð1 � �pÞp � c

2

6
6
6
6
4

3

7
7
7
7
5
:

where
ð1� ZÞbs

d ¼ F, (1 − �p)p = G. The characteristic equation of J0 is given by

λ3 + Q1λ
2 + Q2λ + Q3 = 0, where

Q1 ¼ cþ d þ d > 0;

Q2 ¼ cðdþ dÞ þ dd � GF ¼ cðdþ dÞ þ dd � dcR0 > 0;

Q3 ¼ dðcd � GFÞ ¼ dðcd � dcR0Þ > 0:

The Routh-Hurwitz criterion for the cubic equation is as follows:

Q1Q2 � Q3 ¼ ðcþ d þ dÞ½cðdþ dÞ þ dd � GF� � dðcd � GFÞ

¼ ðd þ dÞ½cðcþ d þ dÞ þ dd� � GFðcþ dÞ > 0:

Thus, the Routh-Hurwitz criterion is satisfied. So, the System (1) is locally asymptotically sta-

ble in the neighborhood of the disease-free equilibrium (DFE) E0. If R0 > 1, then Q2 < 0,

implying that E0 is unstable. The referred study [20] can be reviewed for further notes on the

stability of the disease-free equilibrium.

Theorem 2. The endemic equilibrium point E1ðT�
1
; I�

1
;V�

1
Þ of the System (1) is locally

asymptotically stable when R0 > 1 and unstable otherwise.

A random model of HCV
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Proof. When evaluated at the point E1, System (1) has the Jacobian matrix

JðE1Þ ¼ J1 ¼

� d � ð1 � ZÞbV�
1

0 � ð1 � ZÞbT�
1

ð1 � ZÞbV�
1

� dþ
2dI�

1

c2
ð1 � ZÞbT�

1

0 ð1 � �pÞp � c

2

6
6
6
6
4

3

7
7
7
7
5
:

where (1 − η)β = A, (1 − �p)p = B. The characteristic equation of J1 is given by

l
3
þ Q�

1
l

2
þ Q�

2
lþ Q�

3
¼ 0, where

Q�
1
¼ cþ dþ d þ AV �

1
�

2dI�
1

c2

;

Q�
2
¼ cd �

2dcI�
1

c2

�
dcdR0T�1

s
þ ðd þ AV �

1
Þ cþ d �

2dI�
1

c2

� �

Q�
3
¼ cðd þ AV �

1
Þ d �

2dI�
1

c2

� �

� ABdT�
1
¼ cdðd þ AV �

1
Þ 1 �

2I�
1

c2

� �

�
dcd2R0T�1

s
:

The Routh-Hurwitz criterion for the cubic equation is as follows:

Q�
1
Q�

2
� Q�

3
¼ cþ dþ d þ AV �

1
�

2dI�
1

c2

� �

cd �
2dcI�

1

c2

�
dcdR0T�1

s
þ ðd þ AV �

1
Þ cþ d �

2dI�
1

c2

� �� �

� cdðd þ AV �
1
Þ 1 �

2I�
1

c2

� �

�
dcd2R0T�1

s
> 0:

When R0 < 1, it is easy to see that Q�
1
> 0, Q�

2
< 0, Q�

3
< 0 and Q�

1
Q�

2
� Q�

3
> 0. Thus, by

Routh-Hurwitz criterion, the endemic equilibrium point E1ðT�
1
; I�

1
;V�

1
Þ is unstable.

Global stability

The global stabilities of the disease-free equilibrium E0 and the endemic equilibrium E1 of the

Hepatitis C Virus transmission model are investigated in this section [25–27].

Theorem 3. The disease-free equilibrium E0 is globally asymptotically stable in the posi-

tively variant set O for R0 < 1.

Proof. Consider the following Lyapunov function U(t) = (1 − �p)pI + δV [28]. Calculating

the derivative
dUðtÞ

dt for the solutions of System (1), we get

dUðtÞ
dt

¼ ð1 � �pÞp
dI
dt

� �

þ d
dV
dt

� �

¼ ð1 � �pÞp ð1 � ZÞbVT � dI 1 �
I
c2

� �� �

þ dðð1 � �pÞpI � cVÞ

¼ ð1 � ZÞð1 � �pÞpbVT � dcV þ
d

c2

I2 � V ð1 � ZÞð1 � �pÞpb
s
d

� �
� dc

h i

¼
V
d
½R0dcd � dcd� ¼ VdcðR0 � 1Þ:

Provided that R0 < 1, we find that
dUðtÞ

dt � 0, which, considering LaSalle’s invariance principle

[29], indicates that the disease-free equilibrium E0 is globally asymptotically stable.

A random model of HCV
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In the following, we deal with the geometric approach developed in [27] for the proof of the

global stability of endemic equilibrium point E1. A simple sufficient condition guarantees the

global asymptotical stability of the epidemic equilibrium E1. We begin with a summary of the

geometric approach.

Consider the autonomous dynamical system:

dx
dt
¼ f ðxÞ; ð4Þ

where f: D! Rn, D� Rn is an open set and f 2 C1(D).

Assume that the following hypothesis hold [25]:

• (H1): O is simply connected;

• (H2): A compact absorbing set K� O exists;

• (H3): A unique equilibrium x� exists for the differential Eq (4) in O,

where O is the region where the model makes biological sense.

Lemma 1. ([30]) Assume that (H2) and (H3) are satisfied and that System (4) satisfies a

Bendixson criterion which is robust under C1 local perturbations of f(x) for all non-equilib-

rium non-wandering points of System (4). If x� is stable then it is globally stable in D.

Let x! pðxÞ 2
n

2

 !

�
n

2

 !

be a matrix-valued function which is C1 for x 2 D. Assume

that p−1(x) exists and is continuous for x 2 K. Define q as follows

q ¼ limt!1supsupx02K
1

t

R t
0

mðBðxðs; xoÞÞÞds, where B = pfp−1 + pJ[2]p−1. Thus, pf is the matrix

given by,

ðpijðxÞÞf ¼
@pijðxÞ
@x

� �T

� f ðxÞ ¼! pijðxÞ � f ðxÞ

and J[2] is the second additive compound matrix of the Jacobian matrix (J(x) = Df(x)), while μ
(B) is the Lozinski measure of B with respect to a vector norm |.| in Rn;N ¼ C2

n and is defined

by

mðBÞ ¼ limh!0þ

jI þ hBj � 1

h
:

The following result for global stability is proved by [27].

Lemma 2. ([30]) Suppose that D is simply connected and that (H2) and (H3) are satisfied.

Then the unique equilibrium x� of System (4) is globally stable in D if R0 < 0.

The following result can be found with the lemmas above.

Theorem 4. The endemic equilibrium E1 ¼ ðT�
1
; I�

1
;V�

1
Þ of System (1) is globally asymptoti-

cally stable in O if R0 > 1.

Proof. Firstly, we consider the Jacobian matrix of System (1)

J ¼

� d � ð1 � ZÞbV 0 � ð1 � ZÞbT

ð1 � ZÞbV � dþ 2dI
c2

ð1 � ZÞbT

0 ð1 � �pÞp � c

2

6
6
6
4

3

7
7
7
5
:

A random model of HCV
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Its second additive compound matrix is

J ½2� ¼

� d � dþ 2dI
c2
� ð1 � ZÞbV ð1 � ZÞbT ð1 � ZÞbT

ð1 � �pÞp � c � d � ð1 � ZÞbV 0

0 ð1 � ZÞbV � c � dþ 2dI
c2

2

6
6
6
6
4

3

7
7
7
7
5
:

Let pðxÞ ¼ PðT; I;VÞ ¼ diag 1; I
V ;

I
V

� �
, then

pf ¼ diag 0;
_IV � I _V

V2
;
_IV � I _V

V2

� �

; pf p� 1 ¼ diag 0;
_I
I
�

_V
V
;
_I
I
�

_V
V

� �

;

pJ ½2�p� 1 ¼

� d � dþ 2dI
c2
� ð1 � ZÞbV ð1� ZÞbV2T

I
ð1� ZÞbTV

I

ð1� �pÞpI
V � c � d � ð1 � ZÞbV 0

0 ð1 � ZÞbV � c � dþ 2dI
c2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:

The matrix B ¼ pf p� 1 þ pJ ½2�p� 1 ¼
B11 B12

B21 B22

" #

, where

B11 ¼ � d � dþ
2dI
c2

� ð1 � ZÞbV; B12 ¼
ð1 � ZÞbV2T

I
;
ð1 � ZÞbTV

I

� �

B21 ¼
ð1 � �pÞpI

V
; 0

� �T

;

B22 ¼

� c � d � ð1 � ZÞbV þ _I
I �

_V
V 0

ð1 � ZÞbV � c � dþ 2dI
c2
þ

_I
I �

_V
V

2

4

3

5:

Let (a1, a2, a3) be a vector in R3. Its norm L1 k . k is defined as

k ða1; a2; a3Þ k¼ maxfja1j; ja2j þ ja3jg:

Denote the Lozinski measure with respect to this norm by μ(B). It follows from the notation in

[31] that we have μ(B)� sup{g1, g2}, where

g1 ¼ m1ðB11Þ þ jB12j; g2 ¼ jB21j þ m1ðB22Þ:

|B12|, |B21| are matrix norms with respect to the L1 vector norm, and μ1 denotes the Lozinski

measure with respect to the L1 norm. Then

m1ðB11Þ ¼ � d � dþ
2dI
c2

� ð1 � ZÞbV; jB12j ¼
ð1 � ZÞbTV

I
; jB21j ¼

ð1 � �pÞpI
V

;

m1ðB22Þ ¼ max � c � d � ð1 � ZÞbV þ
_I
I
�

_V
V
; � c � dþ

2dI
c2

þ
_I
I
�

_V
V

� �

�
_I
I
�

_V
V
� c � h;
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where h ¼ minfd þ ð1 � ZÞbV; d � 2dI
c2
g > 0. Therefore, we have

g1 ¼ � d � dþ
2dI
c2

� ð1 � ZÞbV þ
ð1 � ZÞbTV

I
;

g2 �
ð1 � �pÞpI

V
þ

_I
I
�

_V
V
� c � h:

From the equation System (1), we get

_I
I
¼
ð1 � ZÞbTV

I
� dþ

dI
c2

;
_V
V
¼
ð1 � �pÞpI

V
� c:

Then we have

g1 ¼
_I
I
� d þ

dI
c2

� ð1 � ZÞbV �
_I
I
� d; g2 �

_I
I
� h:

Furthermore, we obtain mðBÞ � supfg1; g2g �
_I
I � d. Along each solution (T(t), I(t), V(t)) of

System (1) with (T(0), I(0), V(0)) 2 K, where K is the compact absorbing set, we have

1

t

Z t

0

mðBÞds �
1

t

Z t

0

_I
I
� d

� �

ds ¼
1

t
ln

IðtÞ
Ið0Þ
� d;

which implies

q ¼ limt!1supsupx02K
1

t

Z t

0

mðBðxðs; xoÞÞÞds

� limt!1supsupx02K
1

t
ln

IðtÞ
Ið0Þ
� d � �

d
2
< 0:

As a result, endemic equilibrium E1 ¼ ðT�
1
; I�

1
;V�

1
Þ of System (1) is globally asymptotically sta-

ble in O if R0 > 1.

Random behavior of the model

We investigate the behavior of the randomized components to visualize the effects of small

variations on the model output. The parameters in the deterministic System (1) are added ran-

dom effects to investigate the random characteristics of the model. A random analysis of mod-

els using random differential equations with random parameters has been used before for a

model of avian-influenza by Merdan and Khaniyev in 2008 and for bacterial resistance by

Merdan et al., which was the motivation for the method used in this work [18, 32]. The ran-

dom model is analyzed to investigate the numerical characteristics of the event and thus com-

ment on the random behavior of the model components. The randomness in the parameters

of the model can be linked to the stability of the deterministic model since the stability of the

equilibrium points are essentially the ability of the system of maintain its position on these

points under small variations. We use normally and symmetrically distributed random effects

to model real lifer variations in the parameters of the model. Normal distribution is commonly

used for random variables with unknown distributions since the central limit theorem states

that a sufficiently large number of independent random variables will be approximately nor-

mally distributed under certain conditions. A triangularly distributed random variable has a

high probability around its mean and the probability decreases for values that are far away

from the mean. A symmetrical triangular distribution and a normal distribution were used for
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the random effects since they are similar in the above mentioned sense and hence a compari-

son can be made for the randomness of the results.

0.1 Investigation of the model under normally varying random effects

The parameters s, d, η, β, δ, c2, �p, p and c are considered to be random variables with normal

distribution in order to investigate the model under normally distributed random effects.

Using the “randn” command in MATLAB, which generates random variables with stan-

dard normal distribution, we can generate random variables s, d, η, β, δ, c2, �p, p and c which

have normal distribution. These generated random variables will have the following forms: c =

c0 + σ1η1, d = d0 + σ2η2, β = β0 + σ3η3, δ = δ0 + σ4η4, s = s0 + σ5η5, �p = �p0
+ σ6η6, η = η0 + σ7η7,

p = p0 + σ8η8, c2 = c20
+ σ9η9, where the random variables Zi; i ¼ 1; 9 are independent random

variables with standard normal distribution and si; i ¼ 1; 9 are the corresponding deviations

used for each of the parameters s, d, η, β, δ, c2, �p, p and c. The following values will be used for

the deviations of parameters:

c ¼ c0 þ 1:0� 10� 1 � Z1; d ¼ d0 þ 1:0� 10� 4 � Z2; b ¼ b0 þ 1:0� 10� 8 � Z3;

d ¼ d0 þ 1:0� 10� 2 � Z4; s ¼ s0 þ 1:0� 10þ3 � Z5; �p ¼ �p0
þ 1:0� 10� 2 � Z6;

Z ¼ Z0 þ 1:0� 10� 2 � Z7; p ¼ p0 þ 1:0� 10� 1 � Z8; c2 ¼ c20
þ 1:0� 10þ5 � Z9:

As it can be seen in the list above, normally distributed random variables, which are

denoted as Zi; i ¼ 1; 9, are added to the initial values of the parameters s, d, η, β, δ, c2, �p, p and

c, which are denoted by the zero-indexed parameter, therefore forming the new parameters

which have normal distribution. The deviations of the random effects are determined to be

powers of 10, so that the random effect added to the initial values of the parameters is around

1% to 4.4% of the initial value.

Replacing the parameters in the model with the new random variables listed above gives the

system of random differential equations below:

dT
dt

¼ ðs0 þ 1000Z5Þ � ðd0 þ 0:0001Z2ÞT

þð1 � ðZ0 þ 0:01Z7ÞÞðb0 þ 0:00000001Z3ÞVT;
dI
dt
¼ ð1 � ðZ0 þ 0:01Z7ÞÞðb0 þ 0:00000001Z3ÞVT

� ðd0 þ 0:01Z4ÞI 1 �
I

ðc20
þ 100000� Z9Þ

 !

;

dV
dt

¼ ð1 � ð�p0
þ 0:01Z6ÞÞðp0 þ 0:1Z8ÞI � ðc0 þ 0:1Z1ÞV:

ð5Þ

MATLAB is used to obtain results for the model under random effects with 105 simulations.

The random system produces deterministic differential equations which are assigned different

coefficients for every trial of the event.

Note that a random variable is a measureable function from the set of possible events to real

numbers R meaning it is a real valued function. Hence for every trial of the event, the random

variables produce different real numbers according to their random distribution. For the ran-

dom model, this would mean that we would get a different set of differential equations for vari-

ous trials which would all be deterministic differential equations with different valued

coefficients. Since the random model produces deterministic equations with variations in the

set of parameters, the random analysis of the behavior of model components will be based on
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the statistical properties of the numerical solutions of these deterministic equations. Using 105

simulations of the numerical solutions of the equations, comments are made on the numerical

characteristics of the model with random coefficients.

0.2 Simulation results for normal distribution

0.2.1 Expectations. T(t), I(t) and V(t) under random effects are random variables. Hence,

their moments can be evaluated using the law of large numbers.

ÊðTðtÞÞ ¼
1

N

XN

i¼1

TiðtÞ

Ti(t), i = 1, . . ., N are the results obtained from the simulation of the process T(t). The graphs

of E(T(t)), E(I(t)) and E(V(t)) are given in Fig 2.

Fig 2 suggests that the expectation of T(t) will go up while the expectations of I(t) and V(t)
will go down. (2782200, 20) and (2400000, 0) are the max. and min. values for the expectation

of T(t) respectively, meaning that the expected value increases from the beginning until the

end. The expected values of the number of infected hepatocytes and virions both have decreas-

ing behavior, although it can be seen that the decrease of the expected value of the number of

virions is much more rapid. (2000000, 0) and (18783, 20) are the max. and min. values for the

expectation of I(t), while (400000, 0) and (95.0005, 20) are the max. and min. values for the

expectation of V(t).
0.2.2 Variances. The graphs of var(T(t)), var(I(t)) and var(V(t)) are given in Fig 3.

It can be seen from Fig 3 that the variance of the number of uninfected hepatocytes, var(T
(t)), increases throughout the process, while the rate of increase becomes slightly larger as the

process continues. Fig 3 also suggests that The variances of the number of infected hepatocytes

and virions show rapid increases in the beginning of the process but start to decrease after a

while. The maximum and minimum values of the variances are obtained from the simulations

in MATLAB as follows: max(var(T(t))) = 4.0603 × 108 is obtained at t = 20, while min(var(T

Fig 2. Expectations of T(t), I(t) and V(t).

https://doi.org/10.1371/journal.pone.0181571.g002

Fig 3. Variances of T(t), I(t) and V(t).

https://doi.org/10.1371/journal.pone.0181571.g003
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(t))) = 0 is obtained at t = 0. max(var(I(t))) = 1.1049 × 109 at t = 5.2, while min(var(I(t))) = 0 is

obtained at t = 0. max(var(V(t))) = 7.67 × 107 is obtained at t = 0.6, while min(var(V(t))) = 0 is

obtained at t = 20. Hence, it can be said that the randomness in the results for I(t) and V(t) are

expected to reach a maximum level in the observed time interval and then fall down to zero

again.

0.2.3 Confidence intervals. The confidence intervals of T(t), I(t) and V(t) are found in the

form of [E(T(t)) − Kσ(T(t)), E(T(t)) + Kσ(T(t))] by using the expected values and standard

deviations which were previously calculated. For K = 3, confidence intervals are given at

approximately 99%, meaning that there is 99% probability that the given interval includes the

real value of T(t). The confidence intervals can be seen in Fig 4 (The dashed lines are the upper

and the lower limits of the intervals.).

Fig 4 shows that the confidence intervals, in accordance with the results for the variances,

become wider in the process for I(t) and V(t), before narrowing down again. The extremum

values of the confidence intervals are (2842600, 20) and (2400000, 0) for T(t), (2000000, 0) and

(7431.9, 20) for I(t) and (400000, 0) and (0, 20) for V(t) (The lower limit of the confidence

intervals are calculated by subtracting 3 standard deviations from the means, thus any negative

value obtained must be ignored since it is biologically irrelevant).

0.3 Investigation of the model under triangularly varying random effects

The parameters are considered to be random variables with symmetrical triangular distribu-

tion in the interval (−1, 1) in order to investigate the model. Using the property above and the

‘rand’ command in MATLAB, which generates uniformly distributed random variables from

(0, 1), we can generate random variables which have symmetrical triangular distribution in the

interval (−1, 1). A similar modeling approach will produce the system under triangular effects

as:

dT
dt

¼ s0 þ 0:1ðZ11 � Z12Þ � d0 þ 0:0001ðZ21 � Z22ÞT

þð1 � Z0 þ 0:01ðZ71 � Z72ÞÞðb0 þ 0:00000001ðZ31 � Z32ÞÞVT;
dI
dt
¼ ð1 � Z0 þ 0:01ðZ71 � Z72ÞÞðb0 þ 0:00000001ðZ31 � Z32ÞÞVT

� ðd0 þ 0:01ðZ41 � Z42ÞÞI 1 �
I

c20
þ 100000� ðZ91 � Z92Þ

 !

;

dV
dt

¼ ð1 � �p0
þ 0:01ðZ61 � Z62ÞÞðp0 þ 0:1ðZ81 � Z82ÞÞI � ðc0 þ 0:1ðZ11 � Z12ÞÞV:

ð6Þ

Here, the random variables Zij; i ¼ 1; 9; j ¼ 1; 2 are uniformly distributed independent ran-

dom variables from (0, 1), so that their difference can produce independent symmetrical

Fig 4. Confidence intervals of T(t), I(t) and V(t).

https://doi.org/10.1371/journal.pone.0181571.g004
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triangular random variables in (−1, 1). Monte Carlo method is used in MATLAB to obtain

results for the model under random effects. Simulations are repeated more than 105 times in

order to obtain accurate results.

0.4 Simulation results for triangular distribution

0.4.1 Expectations. Taking advantage of the law of large numbers, the expectations of T
(t), I(t) and V(t) are evaluated similarly to the case of normally distributed random effects. The

results for E(T(t)), E(I(t)) and E(V(t)) are given in Fig 5.

A similarity between the results of the expectations for the normally and triangularly dis-

tributed effects can be seen (Figs 2 and 5). The only difference between the results in these two

cases are the extreme values of the expectations. Fig 5 shows that that the expectation of T(t)
will go up while the expectations of I(t) and V(t) will go down through the observed time inter-

val. (2782100, 20) and (2400000, 0) are the max. and min. values of T(t), respectively.

(2000000, 0) and (18467, 20) are the max. and min. values of I(t), respectively. (400000, 0) and

(93.387, 20) are the max. and min. values of V(t), respectively. The expectations under triangu-

lar effects match the solution curves of T(t), I(t) and V(t), which was also the case in normally

distributed effects.

0.4.2 Variances. The graphs of var(T(t)), var(I(t)) and var(V(t)) are given in Fig 6.

While the shapes of the graphs for var(T(t)), var(I(t)) and var(V(t)) are the same for both

normally and triangularly distributed effects (Figs 3 and 6), there is considerable difference in

the values of these variances. It can be said that the variances show similar behavior, but with

different values. The minimum and maximum values for the variances are as follows: max(var
(T(t))) = 6.7858 × 107 is obtained at t = 20, while min(var(T(t))) = 0 is obtained at t = 0. max
(var(I(t))) = 1.8583 × 108 is obtained at t = 5.4, while min(var(I(t))) = 0 is obtained at t = 0.

max(var(V(t))) = 1.2817 × 107 is obtained at t = 0.6, while min(var(V(t))) = 0 is obtained at

t = 20. Hence, it can be said that Fig 6 suggests that the results for the random effects with sym-

metrical triangular distribution have a smaller variance for T(t), I(t) and V(t).
0.4.3 Confidence intervals. The confidence intervals of T(t), I(t) and V(t) can be seen in

Fig 7 (The dashed lines are the upper and the lower limits of the intervals).

Fig 7 shows narrower confidence intervals for T(t), I(t) and V(t), as a result of the smaller

variances. The extremum values of the confidence intervals are (2806800, 20) and (2400000, 0)

for T(t), (2000000, 0) and (13933, 20) for I(t) and (400000, 0) and (0, 20) for V(t) (The lower

limit of the confidence intervals are calculated by subtracting 3 standard deviations from the

means, thus any negative value obtained must be ignored since it is biologically irrelevant).

0.5 Comparison of results

More than 105 simulations were made for the model under both normally and symmetrically

triangularly varying random effects. Results for solution curves, expectations, variances and

Fig 5. Expectations of T(t), I(t) and V(t).

https://doi.org/10.1371/journal.pone.0181571.g005
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confidence intervals were given above. However, the results for standard deviation, second

moments, third and fourth central moments, skewness and kurtosis were also calculated from

the simulations. When the results for the random effect with normal distribution and symmet-

rical triangular distribution are compared, some differences can be seen. The higher variance

in the results for the normally distributed random effects is the first to be noticed (Table 2).

The results show that there is about 6 times more variance in the normal results compared

to the symmetrical triangular results, meaning that the random results for the normal results

are 6 times more scattered around the mean values compared to the symmetrically triangularly

varying results. The cause of this difference is the characteristics of the distributions used for

the random effect. Standard normal distribution has a variance of 1 while the variance of sym-

metrical triangular distribution in the interval (−1, 1) is 1

6
. The difference in variances causes a

difference in standard deviations and also a difference in confidence intervals, as expected.

The standard deviation of results for the normally varying random effects are about 2.45

(which is the square-root of 6) times bigger than the standard deviation of the results for the

symmetrically triangularly varying effects. As a consequence of the bigger standard deviation,

the confidence intervals for the normally distributed effects are larger than the confidence

intervals for the symmetrically triangularly distributed effects. Again, these differences can be

traced back to the characteristics of the distributions. Further investigation of other character-

istics such as higher central moments, skewness and kurtosis yields that while there is not

much difference in fourth central moments and kurtosis, there is a noticeable variation

Fig 6. Variances of T(t), I(t) and V(t).

https://doi.org/10.1371/journal.pone.0181571.g006

Fig 7. Confidence intervals of T(t), I(t) and V(t).

https://doi.org/10.1371/journal.pone.0181571.g007

Table 2. Maximum values of the references for normal and triangular distributions, respectively.

Maximum Variance of Results for T 40.603 × 107 6.7858 × 107

Maximum Variance of Results for I 11.049 × 108 1.8583 × 108

Maximum Variance of Results for V 76.700 × 106 12.817 × 106

https://doi.org/10.1371/journal.pone.0181571.t002
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between the third central moments and kurtosis, which can be interpreted as the consequence

of the properties of the distributions used. Finally, it can be said that the symmetrical triangu-

lar distribution could be accepted as more favorable for this study since the scattering of the

values would mean too much change in the variables of the model, which could affect the sta-

bility of the model.

1 Conclusion

In this study, the deterministic stability and the random behavior of the model from [7] were

investigated. The disease-free equilibrium E0 and the endemic equilibrium point E1 were

found. In addition to the equilibrium points, the spectral radius of the system R0 was found.

Once the spectral radius was calculated, the local stability of the model was examined. The

results show that the disease-free equilibrium point of the model is locally asymptotically stable

if R0� 1 and unstable if R0 > 1. It is also shown that the endemic equilibrium E1 is locally

asymptotically stable if R0 > 1 and unstable otherwise. A Lyapunov function was constructed

for the global stability analysis of the disease free equilibrium. The results show that the disease

free equilibrium is globally asymptotically stable provided that R0 < 1. A geometric approach

is used for the global stability analysis of the endemic equilibrium. Thus, it is shown that the

endemic equilibrium point E1 is globally asymptotically stable if R0 > 1. In the last part, the

random behavior of the model is examined. Computer simulations are performed for the

model with both normally and triangularly varying random effects. Numerical characteristics

of the model such as, expectation, variance and confidence intervals are calculated from the

simulations and the distributions for the random effect are compared. It is seen that the ran-

dom behavior of the model is in compliance with the global and local deterministic stability

analysis results. The spectral radius calculated with the parameter values obtained from [7]

matches the outcomes of the random simulations.

The stability analysis performed in this study can be used for a wide number of models in

different research areas both on local and global scales. Various other probability distributions

such as bilateral exponential (Laplace) and generalized beta distributions could be used for the

random effect. Furthermore, random behavior analysis and comparison with the deterministic

results can be improved by using Brownian motion to form stochastic differential equations

for the models. A stochastic model formed by using stochastic differential equations with

Brownian motion could provide better results for the accuracy of the equation system in

modeling the real process. The methods of this study could be used on models for other dis-

eases and provide a better understanding of the disease dynamics hence making way for better

treatment.
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