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Abstract. In this paper, we present new kinds of reciprocal sums of finite products of general
second order linear recurrences. In order to evaluate explicitly them by g-calculus, first we
convert them into their g-notation and then use the methods of partial fraction decomposition
and creative telescoping.
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1. INTRODUCTION

For n > 1, define the second order linear recurrences {Uy} and {V},} with
Up=pUp—1+Up—and Vy, = pVy—1 + Vy—2,

where Up =0, Uy =1 and Vy = 2, V] = p, respectively.
If p =1, then U, = F}, (nth Fibonacci number) and V,; = L, (nth Lucas number).
If p =2, then U,, = P, (nth Pell number) and V,, = Q, (nth Pell-Lucas number).
The Binet forms are

_ Oln—ﬁn _ Oln_l(l—qn)
R N ()
where o, f = (p = /p2+4)/2, g = B/a and i =v/—1.

Throughout this paper we will use the following notations: the g-Pochhammer
symbol (x;q), = (1=x)(1=xq)...(1—xg""'). When x = ¢, we denote (¢;q), by
(Dn.

Many authors [1-11] have studied both finite or infinite and alternating or non-
alternating reciprocal sums including terms of certain integer sequences. More re-
cently, Frontczak [3] evaluated various reciprocal sums of the Fibonacci numbers.
For example, he showed that for m,n > 1

and V, = o" + " =" (1 +4"),

N
Z(_l)m(l’—i—l) Fmit+nF1 _ Fum
Fm(i—1)+nFmi+nFm(i+1)+n FnFmFom

i=1
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X( Fm(N—H) + FnnN _ Fn )—(—l)m FuN
Fm(N+1)+n FmN+n Fntn Fnlem—l—nFm(N—I—l)—i-n

Kili¢ and Prodinger [5] consider some classes of reciprocal sums of general Fibon-
acci numbers, which were computed in closed form in an earlier work and then they
evaluate the same sums by a different approach: First they convert them into their
g-forms and then explicitly evaluate g-versions of the sums by using partial fraction
decomposition method and creative telescoping idea.

In this paper, we shall consider new kinds of reciprocal sums including finite
products of the general Fibonacci and Lucas numbers. We shall summarize what
we will present in this paper below.

e We consider three kinds of alternating reciprocal sums including finite products
of the general Fibonacci and Lucas numbers. All of them have an integer
parameter to increase or decrease the indices of the general Fibonacci or Lu-
cas factors in both numerator and denominator in the sums. Two of these
sums are of the forms

n n

Ur_ Vi
§ (-DF k—d and Z(_l)k k+d+1
k=0 k=0

Uk+dUk+a+1Uk+d+2 Ukt+aUk+d+1Uk+a+2

The other kind sums has an additional parameter m which determines the
number of the general Fibonacci or Lucas factors in the numerator or de-
nominator. It will be of the form

n

Z (—1)k Uk+cUk+c+1---Ukctm—1
Xi+d Xke+d+1--- Xk+d+m+1

k=0

where X, is either U, or V.

e Before all, we convert all the claimed results into their g-forms. After this, we
will use partial fraction decomposition (pfd) method and creative telescoping
idea to prove the g-version of the claimed results.

e By the g-versions of three kinds of reciprocal sums, we present general cases
of the original three kinds of sums with an additional integer parameter by
taking a special choosing of g. By the way, we could able to derive non-
alternating reciprocal sums where the indices of the general Fibonacci or
Lucas numbers are in the arithmetic progressions.

e Finally we shall give some applications of our results to certain alternating
and non-alternating reciprocal sums with finite products of the Pell or Pell-
Lucas numbers.

2. THE MAIN RESULTS

Now we are going to present our main results. We start with our first main result.
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Theorem 1. Forn,m >0andc € {-m—+1,...,—1,0,1},

n
Z (1) Uk+cUktet1-- - Uktetrm—1
o Xe+d Xk+d+1-- Xk+d+m+1

= (_1)C+1 UnvcUntct1-- Ungetm
Un+1Xd—c+1[Xn+a+1Xn+d+2--- Xntd+m+1]

where Xy is either U, or V. Note that when X,, = V,, we assume that d is any
integer. When X,, = U,, we assume that d > 1.

Proof. Let X,, = U,. First we convert the LHS of the claim into its g-notation as
shown

m—1 k’"—l X
n [T Uktr4c n g T1 (l—q +C+t)
_1yk =0 _ mc—(m+2)d—2m+1,1 2 =0
S =g (-9 — 5
k=0 [T Ukti+a k=0 T] (1-gktd+)

Second we convert the RHS of the claim into its g-notation as shown

m
[T Un+tt+e
(_1)C+1 =0

m+1

Un+1Ug—c+1 Il Unti+a
=1

m
(1 —q)2 I1 (1 _qn+c+t)
= (_1)0"1‘la(m+2)c—(m+2)d—2m—1 t=0

m+-1 ’
(1—gm+1)(1 —gd—c+l) [T —gntd+r)
t=1

After some simplifications, the g-version of the claimed result is

km—l k 1 m
n q l_[ (l—q +c+t) q —c 1—[ (l_qn+c+t)
Z t=0 . t=0
m+1 -

m+1
k=0 1_[ (l_qk+d+t) (1_qm+1)(1_qd—c+1) 1‘[ (l_qn—i-d—i-t)
t=0 t=1

or, in terms of the g-Pochhammer notation,

i q* (qk+c;q)m B 9" (@"*q), .,
= (@ q),,,  (L—gmtH (I —gd=ctl) (gntdtlig)

m+1
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Define
n qk ((]k+c,(])

Sy = — 7
n Z (qk-l-d’q)m_'_

k=0
Denote the summand term of S, by Ty, that is,

qk <qk+c’q)
(‘1k+d’q)m+2 '

The partial fraction decomposition of 7} reads as

P (qk+c,q> M2 q—d—t+1(qc —d— t+1’q>

Ty, =

(qk+d : q) m+2 -
m+2 t=1 (l_qk+d+t—1) [T (1—qi~1)
i=1
i1
From [5], we could obtain the following identity comes from creative telescoping
idea:

n m—t—1
1 1 B 1 1
Z | —gk+d+m | _gk+d+r ) — Z | —gktd+nti+1 " | _gk+d+t )

k=0 k=0
2.1

In that case, by using the equality (2.1), we write

ma1 . ¢ g4 r+1(qc —d— r+1’q>
Sn = Z (l_qd+t—1 d+n+t) Z

=1 r=1 r 1(q)m —r+2

m+1

1
m
_( 1) m+1 Z( d+t 1 l_qd—i-n—i-t)

c—d—2. ) ( d—c. )
(m—t+1)c—(m—t+2)d +1(t—1)+ 2m=21+1 (q 4 7 4 t—m+1
(D=1 (Dm—r+1

xq

[ —gn+1 m+1 qt(—c—l—d—m—i—t)

=(=D" m+1 d+i1—1 d+n+t
l—gm™ = (1-¢ )(1—q )

c—d—2. ) ( d—c. )
c—1—d+imm+14+2c¢—2d) (q 4 7 4 t—m+1

(@) =1 (@Dm—t+1

xq

_ l_qn+1
(1 _qc—d—l)(l _qm-i-l)
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S 1t+1 (Hl) 1( - 1,q) (qc_d;q)m—t—i—l
XZ( ) —qd A =g (@) ;-1 (Dt +1

l_qn+1

= (1 _qc—d—l)(l _ m+1)

1+2 c—a—1. c—a.
XZ( l)t ( > l(q ! 1’61)1—t (q d’q)m—t
— gt (1 —qd 441 (9), (¢) s

1_ n+1 q(é)
- (1—gmt)(1—gc=d-1) 5 Z(_ )t g —qd) (gt —qdtnt1)

(1 _qc—d—t—l)(l _qc a’ t) o (1 _qc—d+m—t—2)(1 _qc—d—i—m—t—l)

(D¢ (@D m—t

Now we define

(1—zg 41 .. (1—zg¢—dtm1)
(z—qN) (=gt (1 -2)(1~-zq)...(1-2¢™)
The partial fraction decomposition of /(z) is

( c—l) (l_qc+m—l)

(Z qd)(q d+n+1)(1 d)(l d+1) (1 d+m)
(1 c+n) (1 c+n+m)

h(z) =

h(z) =

(qd+n+1_qd)(Z qd+n+1)(1_ d+n+1)(1_ d+n+2) (l_qd+n+m+1)

ll (t+l) (1_
+§( Ve (g7 — “)(q"—q"'+"“)(q) (Dm—s (1 —2q")"

If we multiply /(z) by z and let z — oo, then we get

B q—d(l c— 1) ( C+m 1)
- (1—gn+t1)(1—¢q d)(l— d—i—l)n_(l_ d+m)
q—d(l_qc+n)”.(1_qc+n+m)

—t+c—d— 1) (1 —t+c —d+m— 1)

_(1_ n+1)(1_ d+n+1)(1_qd+n+2)_”(1_qd+n+m+1)

“ e (=4 ‘
+§,( ) (@ =9 =g ) (D) (@Dms

Sincec e {—-m +1,...,—1,0,1}, we write

Z( ) q(2>( 4

t+c—d—1) (1 —t+c—d+m—1)

t+c—d—1) o (1 _ q—t+c—d+m—1)
g (g7 =4 (@) (D s
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B q—d(l_qn+C)“.(1_qc+m+n)
T _ o ntI(1_ ,dtntI(] _ ,dtn+2 _ dtmtn+1y’
(1=g"*H(1—¢q )1 —g )...(1—¢q )

Taking into the constant factor, we write

1 _qn+l
(1 _qm+1)(1 _qc—d—l)

" a1 1=z Y. . (1—zq
x Y (~1)'qD)*!

c—d+m—1)

(2 =9 (@ =g (@) (Dm—s
. q—d(l_qn+0)-..(1_qc+m+n)
(1 _qm+1)(1 _qc—d—l)(l _qd+n+1) . (1 _qd+m+n+1)
_ q—d (qn+c;q)m+1
(1 _qm—i-l)(l _qc—d—l) (Cln+d+1§(])m+1
_ ql—c (qn+c;q)m+1
(1_qm—l—l)(l_qd—c—i—l)(qn—i—d—i-l;q) ’

m—+1

which completes the proof.
Also, when X;,, = V},, the proof is similarly obtained. ]

Now we will present some interesting corollaries of Theorem 1. When m = 2,
Xy, =Ln, U, =F,,d=3and ¢ =0in Theorem I, it gives us

n

Z(_l)k Fka—H _ FnFn+1Fn+2
LissLlgyalryslite F3L4LyyaLlnysLyye

k=0
Whenm =3, X, = U, = P,,d =5and ¢ = 1 in Theorem 1, we get

Xn:(—l)k Pri1Pry2Pry3 __ Pnr1PaioPri3Pria
! PrysPryoPry7Pr+8Pr+o  PaPsPuycPny7PnigPnio

Whenm =4, X,, = Q,, Uy, = Py, d =4 and ¢ = —2 in Theorem 1, we get

i(_l)k Pr—o Pr—1 P P41 _
= Qk+40k+50k+6Qk+7Qk+8Qk+9
B Py—2Pp—1PpPpi1Pnia
P5sQ70n+50n+60n+70n+80n+9
Whenm =5, X, = U, = F,,,d =5 and ¢ = —3 in Theorem 1, we get

i(_l)k Fie—3Fg—2 Fi—1 Fi Fiey1
o FrisFrv6Fr+7Fk+8Fr+9Fr+10Fk+11
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_ Fn—3Fn—2Fn—1FnFn+1Fn+2
F6FoFyt6Fn+7Fn+8FntoFnt10Fnt11
Now we shall give our second result. The first main result stands for the finite

product of the general Fibonacci or Lucas numbers. But the next two results are valid
for special cases.

Theorem 2. For d > 0,

n

U, _ U.
Z(_l)k k—d — (_1)d+1 2n+2 . (22)
o Uk+aUk+a+1Uk+d+2 U2Up+a+1Un+a+2

Proof. First we convert the LHS of (2.2) into its g-notation as shown

n
DRI L
= Uk+aUk+a+1Uk+d +2
n —
:oz_4d_1(1—q)22 g (1-¢*9)

= (1 —gk+d)(1 —gk+d+1)(1 —gk+d+2)

Second we convert the RHS of (2.2) into its g-notation as shown

(—1)d+1 Uzn+2 =a‘2d‘1(1_q)2 (—1)4+1(1 = g2n+2) |
UhUp+a+1Un+d+2 (l_qz) (1—qgd+nt1)(] —gd+n+2)
After some simplifications, g-version of the claimed result is
i gk (1 —gk=) _ g~ (1—qg?"+2)
iU —gkrd) (1 —gktdT1y(] _ gk+d+2) (1—¢2) (1—g@+n+1)(1 —gd+n+2)
Define
" —d
(1—z2
o= _ z( Zq ) I
k=0 (1—-zg9) (1 —zq%tH(1—2zq%12)

Denote the summand term of S, by T'(z), that is,
) = z(1-z979)
T (=zgM)(1—zg? ) (1-2¢9F2)

The partial fraction decomposition of 7'(z) reads as

z(1—2g7)
(1—zg?)(1—zq4+t1)(1—zq9+2)
1 q(1—q%?)  (1+q)(1—g??TY)  1—429+2
T A1 —g)2(1+9) (_ 1—zqd | —zgdtl 1—zqd+2)

— 1 (1 2d) 1 1 )
TP T g 1z
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1 1
2d+1
—(+g)(1—q )(l—zqd“_l—zqdﬂ)].

And so

1 - 1 1
Sn = 1—¢* ( — ) 23
TP (=92 (1 +g) {Q( ! ),;_0 g7 1-zg7) @Y

n
1 1
—(1+q)(1—g34 ! - .
(I+q9)(1—q )kXZ;) 1—zq4+2  1—zqd+1

If wetakem =2,¢t =0, and, m = 2,¢t = 1 in (2.1), respectively, then we rewrite S,
given in (2.3) as

1
1 2d 1 1
q(1—¢"%) ( - )
g34+t1(1—¢)2(1+q) |: I;) | —gktd+itn | _gk+d

—(1+g)(1=¢>"*Y) (1 _qa}+n+2 B l_qld+1)}
U_+qn+1)<1_qd+1)(1_qn+1)
T (1—qd+1) (1= gd+n+1) (1= q2+7+2) (1= ¢) (1 + q)
q—d(l _q2n+2)
(1 _qz) 1 _qd+n+1)(1 _qd+n+2)'
Thus, we have the conclusion. O

When U,, = F,, and d = 3 in (2.2), we obtain

zn:(—l k Fi—3 _ P

o Fri3Fxtafrts  FayaFnis

Now we going to give our third result:

Theorem 3. Ford > 0,

Xn:(—l)k Vit+d+1 _ Un+1Un+2(d+1) 2.4)
= Uk+dUk+d+1Uk+da+2  U1UaUi+1Un+a+1Unta+2

Proof. After required converting and simplifications, we find the g-version of the
claimed result as follows
n qk(l +qk+d+1)

k2=;) (1 _qk+d)(1 _qk—i—d—i—l)(l _qk+d+2)

(1 _qn+1)(1 _qn+2(d+1))
" (-9 (1=q?) (1—q?+1) (1 —gn+d+1)(1 —gntd+2)’
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Define
n

Z Z(1+Z(]d+1)
o (1=2g) (1 —zg4+ ) (1 - 2q+2)

Denote the summand term of S, by T'(z), that is,

z(1+z¢4*h
(1-2g9)(1-zq?T) (1 —zq9+2)
The partial fraction decomposition of 7(z) reads as

z(1+zg41h)
(1-2q9)(1—zq9+1) (1 —zq4+?)
B 1 l+g¢g 2(1+4+¢q) 1+g¢
q¢(1+¢9)(1—¢)? (1—zqd C1-zgdH! 1—zqd+2)

B —1 [(1+)( L )
g% (1+¢)(1—q)? P\T=2g72 " 1244

1 1
—2(1+4) (1_qu+2 o 1_qu+1)]'

-1 1
:qd(1+q)(1—q)2[ +Q)Z( q9t2 1—zqd)

1
_2(1+q)2( s I_quﬂ)]

If wetakem =2,¢t =0, and, m = 2,¢ = 1 in (2.1), respectively, then we rewrite the
last equality as

Sn =

T(z)=

And so

—1 1
=qd(1+q)(1_q)2|: "HI)Z( k+d+1+n l_qk+d)

1 1
—2(1+4) (1 —gdtnt2 | _gd+1 )i|
(1 _qn-i-l)(l _qn+2d+2)
T (=) (1—g) (A —g4H+ ) (1 —gnHd+1) (1 —gntd+2)’
Thus, we have the conclusion. O

When U, = F,,, V,, = L, and d = 5 in (2.4), we obtain

i(_l k Li+s _ FpiFagnn
FrysFryeFry7 FsFeFnyeFni7
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3. GENERAL CASES

In the previous section, we found the g-versions of the claimed results in Theorems
1-3 while proving them. Now we shall present more general cases of Theorems

1-3 by taking ¢ = B5/a® for any integer s in the g-forms of them without proof,
respectively.

Theorem 4. Forn,m >0andc € {—-m+1,...,—1,0,1},
m—1 m
n 1_[ Us(k+c+t) H Us(n+t+c)
_qywkt=0 _  qysle+D) t=0
Z( D m+1 =D m+1 ’
k=0 [T Xsterd+n) Usm+1) Xs@—c+1) 11 Xs@iti+a)
r=0 r=1

(3.1
where Xy is either U, or V. Note that when X, = Vy,, we assume that d is any
integer. When X,, = U,, we assume that d > 1.

In (3.1),if wetakem =3,5s =2, Uy, = Py, X, = On,d =4 and ¢ = 1, then we
obtain

n
P2 PoxyaPokye Poni2PrntaPornyePonys

=0 Q2k+89Q2k+10Q2k+12Q2k+14Q2k 16 PsQ802n+10 O2n+1202n+1402n+16

Whenm =4,s =—-1,U, = X;, = F,,, d = 6 and ¢ = 0 in Theorem 4, then, by
F_, = (—=1)"*1F,, we obtain
i(_l)k FopFg1 Fp—aF—3
Fop—6F k—7F k—sF _—oF k—10F—k-11

k=0

_ i(_l)k Fie Frey1 Fre2 Freys
= Fry6Fr+7Fr+8Fk+9Frr10Fr+11

FoFpnv1Fny2Fn3Fnta

 FsFrFy7Fni8FntoFnt10Fnt11

Whenm =5,s=3,U, = F,, X, =L,,d =2 and ¢ = —3 in Theorem 4, then
we obtain

n
3 (1) Fak—9 F3k—6F3k—3 F3k F3k+3
! LakteLsk+olsk+12L3k+15L3k+18L3k+21L3k+24

F3n—9F3n—6F3n—3F3, F3,43F3546

FisL1sL3n+oL3nt12L3n+15L3n418L3n+421L3n 424



RECIPROCAL SUMS OF GENERAL SECOND ORDER RECURRENCES 1049

Theorem 5. Ford > 0,

“ U, U,
Z(_l sk s(k—d) = (-1 sd+1 5(2n+2)
= Usk+a)Ustk+d+1) Us(k+d +2) UasUstird+1) Us(n+d+2)
3.2)
If we take U, = F,, d =2 and s = 5 in (3.2), then we obtain
Xn:(—l)k Fsk—10 _ Fion+10
e Fsi10Fsk+15F5+20 F10Fsp4+15Fsn420
Theorem 6. For d > 0,
Xn:(—l sk Vsk+d+1) _ Ustn+1)Us(n+24+2)
= Uste+ad)Usk+d+1) Usk+d+2)  UsUsa Us(@a+1) Usurd+1) Us(n+d +2)
3.3)

If we take U, = Py, V;, = OQn, d = 4 and s = —3 in (3.3), then, by P_, =
(=1)"*1P, and Q_, = (—1)" Q,, we obtain

n

S (-1 Q—3k-15 _ i(_l)k O3k+15
k=0

! P_3k—12P_3k—15P-3k—138 P3ir12P3k+15P3k+18

P3y4+3P3n+430

P3P12Pi15P3nq15P3nyis

4. CONCLUSIONS

In the last section, we derived more general results, where the sign functions and
the indices of Fibonacci or Lucas factors are depend on the integer parameter s. By
the way, one can see that these generalized reciprocal sums are alternating for odd
integer s, and, non-alternating for even integer s while the original sums in Theorems
1-3 are always alternating sums.
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