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 Abstract   

The implementation of sustainable manufacturing techniques to make machining processes 

more eco-friendly is a challenging topic that has attracted significant attention from the 

industrial sector for many years. As one of the dominant manufacturing processes, machining 

can have a considerable impact in terms of ecology, society, and economics. In certain areas, 

this impact is a result of using certain cutting fluids, especially during the machining of 

difficult-to-cut alloys such as titanium, where a large amount of cutting fluid is wasted to ease 

the cutting process. In such scenarios, identifying suitable machining conditions to supply 

cutting fluids using eco-friendly techniques is currently a major focus of academic and 

industrial sector research. In this study, effects of minimum quantity lubrication with different 

concentrations of hexagonal boron nitride nanoparticles on the surface roughness and cutting 

force of slot-milled titanium alloy is investigated using analysis of variance and response 

surface methodology. The results reveal that all responses are sensitive to changes in the feed 

per tooth, cutting depth, and cutting fluid flow rate. The regression functions generated were 

combined with particle swarm optimization to in order to improve energy-efficiency, as well. 

Possible sectorial scenarios were generated for wider industrial adoption. Additionally, it was 

proven that utilizing minimum quantity lubrication with hexagonal boron nitride nanoparticles 

can reduce both cutting force and surface roughness, which makes it to be a promising 

alternative as a nanoparticle augmented minimum quantity lubrication method for machining 

titanium alloys.  

Keywords Titanium alloy; Milling; Minimum Quantity Lubrication; hexagonal boron nitride 

nanoparticles; Particle Swarm Optimization. 
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1. Introduction 

The idea and indicators of sustainable production is well defined at macro level, but 

there is a lack of implementation of environmentally benign manufacturing 

technologies at shop floor layer (Veleva et al., 2001, Pusavec et al, 2010). Main 

objectives in the shop floor for machining industry are 1) Limit the amount of 

cooling-lubrication fluids used in processes 2) Reduce energy use by machine tools, 

3) Substitute hazardous materials in coolants by non-toxic additives (Krajinik et al. 

2016). 

The sustainability drivers at shop floor level and increasing cost pressures have led to 

consideration of environmentally friendly technologies in cooling of machining 

process (Wienert et al. 2004). The minimum quantity lubrication (MQL) has been 

proven as a reliable substitute for conventional cooling methods, because it complies 

with the requirements of sustainability and it has great potential to reduce the coolant 

waste (Sharma et al. 2016). MQL is also known as near-dry machining (Erdel, 1999), 

micro-lubrication (McClure et al., 2004), or green machining. Conventional cooling 

utilizes approximately 200 to 3,000 l/min of cutting fluid, whereas MQL utilizes only 

5 - 500 ml/h (Dhar et al., 2006). A reduction in cutting fluid quantity leads to 

economic and environmental benefits, as well as a reduction of health hazards during 

various machining processes. Fig. 1 presents a classification of sustainable cutting 

fluid supply technologies.  
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Fig. 1. Classification of sustainable cutting fluid supply technologies  

 

To investigate MQL performance in various machining processes, many experimental 

studies have been conducted. Fig. 2 presents a schematic illustration of MQL 

lubrication. Rahim et al. (2013) investigated MQL performance during the turning 

process using an uncoated carbide insert. They reported that as opposed to dry cutting, 

MQL yielded less cutting temperature and cutting force, and better chip thickness. 

Sharma and Sidhu (2014) explored the effects of MQL during the turning of AISI D2 

steel with a tungsten carbide cutting insert and concluded that MQL can improve 

surface integrity to a certain extent and reduce cutting temperature by 50%. Li and Lin 

(2012) applied MQL in a milling process with various cutting speeds and found that 

MQL improves cutting tool life and reduces surface roughness. Lawal et al. (2013) 

studied on assessment of different lubrication techniques, including high-pressure 

coolant, cryogenic cooling, air/vapor/gas coolant, and MQL. They concluded that 

MQL with vegetable oil stands out among other cooling techniques and yields 

superior machining performance. Therefore, their results demonstrated an excellent 
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performance of MQL compared to dry cutting and conventional lubrication in 

different cutting processes based on a reliable systematic approach. 

Fig. 2. A schematic illustration of MQL (Ucun et al., 2013). 

 

While machining with MQL, heat generated in the process is largely eliminated by the 

convection of compressed air with a smaller benefit from the evaporation of cutting 

oil (Su et al., 2006). Because the cooling capacity of this technique depends on 

airflow, its implementation in place of conventional cooling is a complex challenge in 

many machining processes (Najiha et al., 2016). Several works have reported that 

MQL does not provide a significant reduction in heat in areas where many thermal 

problems occur. (Tai et al., 2012; Stephenson et al., 2014).  

This fact limited wider industrial adoption of MQL by machining industry and 

required more research for improvement of the heat capacity and lubricating effects of 

MQL. This can be achieved through the use of fluids with high thermal conductivity, 

such as nanofluids (Chon and Kihm, 2005; Bhattacharya et al., 2004). Nanofluids 

have several desirable characteristics, including better heat transfer performance. 

These characteristics also improve the heat transfer performance of the base fluids 

(Eastman et al., 1996; Liu et al., 2006; Mintsa et al., 2009). Application of 

nanoparticles with cutting fluid as a coolant are still in the early stage. There are many 

different forms of nanomaterials, such as particles, rods, tubes, sheets, and fibers. 

Nanomaterials can be made of metals, oxides, nonmetals, carbides of metals, and 

nitrides of metals (e.g., TiO2, Al2O3, SiO2, CuO, single- and multi-walled carbon 

nanotubes, AlN, SiN, and SiC) (Gupta et al., 2017). 
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Several researchers have noted that nanofluids show promising performance as 

potential replacements for conventional lubrication. Chatha et al. (2016) studied the 

influence of drilling with Al2O3 nanofluid of AL6063 under different cooling 

conditions (e.g., dry, flooded, MQL, and MQL with nanofluid) on surface quality and 

tool. Their experimental results indicated that drilling under MQL with nanofluid 

yields a reduction in cutting force.  Sharma et al. (2015) utilized carbon nanotubes 

with MQL during the turning of AISID2 steel. Study concluded that MQL with 

carbon nanotubes yields better results for temperature and surface quality. Najiha et 

al. (2015) applied TiO2 nanofluids with MQL to the end milling of Al6061 to 

investigate the effects of machining parameters on flank wear patterns. They reported 

that 2.5% TiO2 added to MQL appears to be a feasible composition in terms of tool 

damage. Rapeti et al. (2017) investigated the performance of nanofluids when turning 

AISI1040 steel with varying levels of MoS2. They reported that machining using a 

nanofluid with 0.5% MoS2 content yielded best results. They also compared the 

performance nanofluids containing single and combined Al2O3 and GnP, when 

turning AISI 1040 steel under MQL. Study concluded that Al2O3 + GnP reduces 

surface roughness and cutting force by 20.28% and 9.94%, respectively. A similar 

result was obtained by Rahmati et al. (2013) when applying MoS2 during the end 

milling of AL6061-T6, with an improvement in surface quality at 0.5 wt%.  

Table 1 Summary of previous studies on nanofluids in various machining processes 

Reference 
NP 

Type  
NP wt%  Base oil 

Avg. 

size 

(nm) 

Response Key Findings 

End milling 

Lv et al. 

2018 
GO/ SiO2 

0.02–

0.50  

Purified 

water 

(5–

10) 

(20–

30) 

Tool wear and 

roughness 

Application of GO/SiO2 with 

MQL significantly improves 

roughness and tool life. 

Rahmati 

et al. 

2013 

MoS2 
0.05 and 

1  
Vegetable  

20–

60  

Surface quality, 

cutting force, and 

temperature  

Nanofluid with MQL 

significantly improves surface 

quality, cutting force, and cutting 

temperature. 

Park et 

al 2011 
xGnP 

0.1 and 

1.0  
Vegetable  10 Friction coefficients 

MQL machining provides 

enhanced performance. 

Turning 

Elteggaz 

et al. 

(2018) 

Al2O3 4  Vegetable  18 Tool wear 

Al2O3 oil-based nanofluid MQL 

reduces flank wear and improves 

tool life. 

Hegab 

et al. 

2018 

MWCNT 2 and 4  Vegetable  20 

Tool wear, 

roughness, and 

cutting zone 

temperature  

4 wt% of MWCNTs results in the 

lowest flank wear value. 
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Rahmeti 

et al. 

(2015) 

nMoS2 4  Vegetable  18  

Cutting force, 

temperature, tool 

wear, roughness 

Coconut oil + 0.5% nMoS2 yields 

less cutting force, temperature, 

tool wear, and better roughness. 

Drilling 

Chatla et 

al. 2016 
Al2O3 1.5 vol% Soybean  20 

Cutting force, tool 

wear, and 

roughness 

Vegetable oil combined with NPs 

yields good results in terms of 

reducing friction and wear. 

 

 

Furthermore, Lv et al. (2018) utilized GO/SiO2 with MQL during four-ball and 

milling tests. Their results revealed that nanofluids used for MQL reduce the friction 

during machining. Eltaggaz et al. (2018) reported that the best tool life is obtained 

during turning with a cutting velocity of 120 m/min and feed of 0.2 mm/rev using a 

combination of MQL + Al2O3 NPs. Park et al. (2011) investigated MQL + xGnP on 

friction coefficients during the milling of AISI1045 steel and found that MQL 

machining provides enhanced performance. Hegab et al. (2018) investigated the 

influence of using various concentrations of MWCNT with MQL during titanium 

alloy turning. It was found that 2 wt% of MWCNT nanofluid reduces power load and 

flank wear. Table 1 compares remarkable previous studies on nanofluids in various 

machining processes with their experimental conditions and outputs. 

 

1.1  

Background for optimizing MQL techniques using nanoparticles 

Recently, a major focus of the machining field has been identifying the proper 

machining parameters for various materials under MQL using nanofluids. To achieve 

this goal, researchers analyze and optimize machining processes to determine optimal 

combinations of parameters. 

Traditional optimization methods such as the Taguchi or response surface method 

have been successful in many machining processes. These and other traditional 

methods have been used to identify local optimal solutions but they had low accuracy. 

Evolutionary techniques have also been implemented in certain machining processes 

such as genetic algorithms, artificial bee colonies, and particle swarm optimization 

and these achieve more accurate results (Table 2). Sharma et al. (2015) worked the 

turning of AISI D2 steel by using nanotubes with MQL based on the Taguchi method. 

Nam et al. (2015) focused on the optimization of micro-drilling under MQL using 
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nanodiamonds based on the response surface method and genetic algorithm. Their 

goal was to minimize torque and forces while maximizing material removal rate. It 

was demonstrated that a drill diameter of 0.5 mm with spindle speed of 59,000 RPM 

and nanofluid volumetric concentrations of approximately 2% is optimal. Gupta et al. 

(2016) used Al2O3, MoS2, and graphite for the turning of titanium alloys under MQL 

using response surface method. Parametric optimization was performed using particle 

swarm optimization and bacterial foraging optimization. The results indicated that the 

best machining conditions were at cutting velocity of 215 m/min, feed of 0.10 

mm/rev, and approach angle of 83°. 

 

  

Although there are many studies on MQL in literature, there is a lack investigation on 

how to improve limited heat transfer capacity of MQL, which inhibits its wider 

industry adoption (Chon and Kihm, 2005; Bhattacharya et al., 2004). Although recent 

studies on nanoparticle added MQL shows promising results in this endeavor (Sharma 

et al. 2016), there are still several nanomaterials that demonstrated advanced heat 

transfer capability in other fields, and yet to be experimented with MQL. 

Furthermore, for precision machining widely used by aviation, defense, and 

household goods industries, the enhancement of MQL with nanoparticles will 

possibly lead to increase in energy consumption since surface roughness and specific 

cutting energy are often conflicting objectives (Gutowskiet al. 2006, Moradnazhad & 

Table 2 Optimization studies on MQL with nanofluids  

Ref. Method Material 
Types  

of NPs 

Machining 

Type 

Control 

Parameters 

Output 

Measure(s) 

Gupta   

et al. 

(2016) 

PSO 

BFO 

Titanium 

(grade 

two) 

Al2O3, MoS2, 

and graphite 
Turning 

Vc, f, and 

approach angle 

Force, 

temperature, tool 

wear, and 

roughness 

Sharma 

et al. 

(2015) 

Taguchi 
AISI D2 

steel 

Carbon         

nanotubes 
Turning 

Vc, f, and air 

pressure of MQL 

Temperature and 

roughness 

Nam      

et al. 

(2015) 

RSM  

GA 
Aluminum 

Nano-

diamonds 
Drilling 

Drill dia, f, S, and 

nanofluid 

concentration 

Drilling torque, 

thrust forces, and 

MRR 

Sayuti    

et al. 

(2014) 

Taguchi 

Hardened 

steel AISI 

4140 

SiO2 
Turning 

 

Nano-lubricant 

concentration, 

nozzle 

Angle, and air 

carrier pressure 

Tool wear and 

roughness 
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Unver 2016, Serin et al. 2019). Therefore, as novel contributions of this study to the 

literature, first we investigated the improvement potential of MQL with hexagonal 

boron nitride (hBN) which proved superior heat transfer capacity (Ilhan et al. 2016), 

on milling of Ti–6Al–4V material. Ti–6Al–4V made parts often demands high 

precision by aforementioned industries. 

Lastly, we employed an evolutionary multi optimization technique in order to 

demonstrate this increasingly popular nanoparticle’s achievable minimum surface 

roughness and its trade-off with specific cutting energy for MQL application. We 

hope that the results of this study brings attention to academic community and 

industry that although the use of advanced nanoparticles such as hBN in MQL can 

yield to better results in surface quality, its trade-off with energy should be considered 

and investigated further in order to pursue holistic sustainability goals. 
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2. Experimental setup for slot milling under MQL with hBN 

 

All of our experiments were carried out using a 3-axis CNC machine tool with 

maximum spindle revolution of 8000 rpm. The work piece used for slot milling was a 

titanium alloy block Ti-6Al-4V with 50 × 50 × 100 mm dimensions. (Figure 3). 

During the experiments, six slots were milled along the work piece on each surface 

under various cooling conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Milling setup with MQL 

 

Central Composite design (CCD), which is a popular class of designs used for fitting 

second-order models in Response Surface Method (RSM). It is widely used as they are 

efficient in terms of runs required (Montgomery and Runger 2018). In this study, CCD 

was implemented for designing the experiments with five factors, each having five 

levels, leading to total of 33 randomized runs. Use of five levels with CCD gives an 

advantage with larger than three factors, enabling reduction of total runs and testing 

some boundary values as well. The process factors and levels established by CCD are 

listed in Table 3.  

Machining tests were conducted using coated cementite carbide (Al-Cr-Ni) cutting 

tool with 10-mm diameter. The cutting tool related factors are within the recommend 

limits of the tool manufacturer. All other experimental conditions are given in Table 

4.  

 

Direction of Feed 

Work piece  
Nozzle 

Cutting tool holder  
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Table 4 Experimental conditions 

Machining Operation Slot Milling 

Work Piece Material Ti-6Al-4V 

Cutting Tool 
Coated Cementite Carbide (coated Al-Cr-Ni), 

10 mm dia. 

Cooling Technique MQL with hBN additive 

MQL Technique 

Cutting fluid type (Fetty acid ester) 

Nozzle angle fixed 

Compressed air pressure (3 bar) 

hBN nanoparticles Average size 80–100 (nm) 

 

 

 Table 5 Design of experiments for MQL with  hBN    

Exp. 

No 

Vc        

(m/min) 

f        

(mm/tooth) 

ap 

 (mm) 

Q 

(ml/h) 

NP’s  

(%) 

Responses 

Fc 

 (N) 

Ra 

 (µm) 

SEC 

(J/mm3) 

1 65 0.035 2.3165 29.5 12.5 197.8 0.468 1.916 

2 65 0.035 1.5 29.5 0.2525 220.4 0.454 3.297 

3 65 0.035 1.5 29.5 12.5 151.4 0.357 2.265 

4 56.835 0.035 1.5 29.5 12.5 170.9 0.266 2.557 

5 73.165 0.035 1.5 29.5 12.5 107.8 0.365 1.613 

6 65 0.035 1.5 40.1145 12.5 136.7 0.294 2.045 

7 65 0.035 1.5 18.8855 12.5 222.2 0.411 3.324 

8 65 0.010505 1.5 29.5 12.5 78.3 0.265 3.905 

9 65 0.059495 1.5 29.5 12.5 120.9 0.511 1.068 

10 65 0.035 1.5 29.5 24.7475 115.1 0.294 1.722 

11 65 0.035 0.6835 29.5 12.5 110.5 0.337 3.628 

12 70 0.02 2 23 20 170.9 0.254 3.356 

13 60 0.02 1 23 20 166 0.306 6.519 

14 60 0.02 2 36 20 136.7 0.231 2.684 

15 70 0.02 2 36 5 144 0.219 2.828 

16 70 0.02 1 23 5 129.4 0.322 0.051 

17 70 0.05 1 23 20 146.5 0.395 2.301 

18 60 0.02 2 23 5 227.9 0.301 4.475 

19 65 0.035 1.5 29.5 12.5 158.7 0.329 2.374 

20 60 0.05 2 23 20 244.1 0.534 1.917 

21 65 0.035 1.5 29.5 12.5 151.4 0.361 2.265 

Table 3 Process factors and levels using CCD   

Factor                                  Values 

Vc (m/min)             56.835 60 65 70 73.165 

f  (mm/tooth) 0.010505 0.02 0.035 0.05 0.059495 

ap (mm) 0.6835 1 1.5 2 2.3165 

Q (ml/h) 18.8855 23 29.5 36 40.1145 

NP % 0.2525 5 12.5 20 24.7475 

Coding −1.633 −1 0 1 1.633 
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22 70 0.05 2 36 20 246.6 0.472 1.937 

23 70 0.02 1 36 20 129.4 0.267 5.082 

24 65 0.035 1.5 29.5 12.5 159.2 0.401 2.382 

25 60 0.05 1 23 5 229.5 0.485 3.605 

26 60 0.02 1 36 5 97.66 0.234 3.835 

27 70 0.05 2 23 5 285.6 0.571 2.243 

28 60 0.05 1 36 20 119.6 0.329 1.879 

29 65 0.035 1.5 29.5 12.5 166 0.359 2.480 

30 65 0.035 1.5 29.5 12.5 159.2 0.367 2.382 

31 60 0.05 2 36 5 222.2 0.445 1.745 

32 70 0.05 1 36 5 97.66 0.531 1.534 

33 65 0.035 1.5 29.5 12.5 164.7 0.371 2.464 

 

2.1  

Preparation of hBN nanofluid  

 

This study investigated the possibility for improving the performance of MQL using 

hBN. Nanoparticles were mixed with a base fluid to create a nanofluid. A 2-step 

method was used to prepare the nanofluid with concentrations of 0.2525%, 5%, 

12.5%, 20%, and 24.7475% in the base cutting fluid (fatty acid ester) using a 

mechanical mixer. It was observed that all the mixtures remained stable for days (Fig. 

4) 

Fig. 4. Various hBN concentration levels in fatty acid ester 
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The average hBN particle size provided by the manufacturer was approximately 80 to 

100 nm. In Table 6 densities of both base fluid and nanoparticle are given. 

  

 

 

 

 

 

The amount of hBN required for preparing the nanofluids was calculated using the 

mixture formula in Equation (1). The weight of nanoparticles required for preparing 

100 ml of hBN nanofluid is calculated the following formula, 

% volume concentration =

𝑊ℎ𝐵𝑁

𝜌ℎ𝐵𝑁

𝑊ℎ𝐵𝑁

𝜌ℎ𝐵𝑁
+

𝑊𝑏𝑓

𝜌𝑏𝑓

,                       (1) 

where 𝑾𝒉𝑩𝑵 is the weight of the nanoparticles, 𝝆𝒉𝑩𝑵is the density of the 

nanoparticles,  𝑾𝒃𝒇 is the weight of the fluid, and 𝝆𝒃𝒇 is the density of the base fluid.  

2.2. 

Cutting force and surface roughness measurement 

To measure machining forces during slot milling, blocks of Ti-6Al-4V were mounted 

on top of a three-axis dynamometer (KISTLER 9257-B). The setup for cutting force 

measurement (see Figs. 5 and 6) and a charge amplifier were connected to a PC for 

data collection during experiments. To measure the cutting force components (Fx, Fy, 

Fz) and for computational analysis of signal trends during the slot milling 

experiments, DynoWareTM software was used. Measurements of surface roughness 

(see Figs. 6 and 7) were performed using a Mahr Perthometer M1. The surface 

roughness was measured along the machining direction. All measurements represent 

the averages of 3 values measured at the tool entry, center, and exit area of each slot 

for constructing a statistical regression model. 

 

 

 

 

Table 6 Density of base fluid and NPs 

 

Cutting fluid (fatty acid ester) 0.92 g.cm−3 

hBN  0.0023 g.cm−3 
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Fig. 5. Sample cutting force measurement 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 6. Cutting force data collection system 

 

 

Fig. 7. Locations of roughness measurements 
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3. Results and discussion 

 

3.1   
Analysis of variance (Ra and Fc)  

 

Statistical analysis of the data was carried out in the form of variance analysis using 

the Minitab 17TM software. To analyze the impact of each control parameter on the 

responses, analysis of variance (ANOVA) test was performed (Fig. 8). A confidence 

level of 95% (P-value < 0.005) was adopted. In Table 7, one can see that based on the 

P-values, all control parameters have statistically significant effect on the cutting 

force except for cutting speed. Based on F-Values, the order of influence is as feed, 

depth of cut, nanoparticle concentration and volumetric flow rate. Table 8 reveals 

similar results for surface roughness. However, based on F-Values, the order of 

influence is as feed, volumetric flow rate, nanoparticle concentration and depth of cut. 

As it can be viewed in both Tables 7 and 8, the contribution of the Model(R-sq) as 

calculated by Minitab 17TM indicates that the model accuracy for cutting force is 

94.90%, while that for roughness is 95.13%. Also note that, quadratic and cross-

interactions are not included in the ANOVA tables in order to keep them brief to 

reveal influence of only main parameters. 

 

 

 

 

 

 

 

 

 

Fig. 8. Impact of control parameters on (a) cutting force and (b) surface roughness 

under MQL with hBN 

 
 
Table 7 ANOVA for cutting force  

Source DF 
Adj  

SS 

Adj  

MS 

F-

Value 

P-

Value 
Contribution 

Model 21 67453.5 3212.1 9.75 0.00 94.90% 

Linear 5 57408.7 11481.7 34.86 0.00 80.77% 

Vc (m/min) 1 168.7 168.7 0.51 0.49 0.24% 

f (mm/tooth) 1 40386.3 40386.3 122.61 0.00 56.82% 

ap (mm) 1 12593 12593 38.23 0.00 17.72% 

Q (ml/h) 1 1785.7 1785.7 5.42 0.04 2.51% 

NP concentration (%) 1 2474.9 2474.9 7.51 0.02 3.48% 

a 

b 
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S 18.1487  

R-sq 94.90%  

R-sq(adj) 85.17%  

 
Table 8 ANOVA for surface roughness  

Source DF 
Adj  

SS 

Adj 

MS 

F-

Value 

P-

Value 
Contribution 

Model 21.000 0.282 0.013 10.240 0.000 95.13% 

Linear 5.000 0.239 0.048 36.510 0.000 80.78% 

Vc (m/min) 1.000 0.005 0.005 3.840 0.076 1.70 % 

f (mm/tooth) 1.000 0.193 0.193 147.41 0.000 65.23% 

ap (mm) 1.000 0.006 0.006 4.950 0.048 2.19% 

Q (ml/h) 1.000 0.019 0.019 14.250 0.003 6.31% 

NP concentration (%) 1.000 0.016 0.016 12.090 0.005 5.35% 

S 0.03619  

R-sq 95.13%  

R-sq(adj) 85.84%  

 

 
3.2. 

Response surface analysis of cutting force and surface roughness 
 

The regressions, fitted by Minitab 17TM as a result of RSM for surface roughness and 

cutting force are given in Equations (2) and (3), respectively. A second-order 

regression is used to express the models as all control factors have five levels.  

Regression model for surface roughness                                                            (2) 

Surface 

Roughness (Ra) 

= −1.86 + 0.0832 Vc − 10.08 f+ 0.032 ap − 0.0375 Q + 0.0128 (NP%) 

0.000728 Vc × Vc + 39.9 f × f + 0.0577 ap × ap  − 0.000102 Q × 

Q + 0.000066  (NP%) × (NP%) + 0.155 Vc × f − 0.00390 Vc × 

ap + 0.000642 Vc × Q − 0.000317 Vc × (NP%) + 3.38 f × ap + 0.0154 f × 

Q − 0.1578 f × (NP%) − 0.00281 ap × Q + 0.00383 ap × (NP%) 

+ 0.000077 Q × (NP%) 

Regression model for cutting force                                                                     (3) 

Cutting Force 

(N) 

= −1016 + 23.5 Vc + 8043 f − 152 ap + 17.9 Q + 11.82 (NP%) − 0.163 Vc × 

Vc – 32835 f × f + 35.5 ap × ap − 0.039 Q × Q + 0.0164 (NP%) × (NP%) 

− 5.7 Vc × f + 2.56 Vc × ap  − 0.145 Vc × Q − 0.174 Vc × (NP%) + 1008 f × 

ap − 111.6 f × Q − 55.4 f × (NP%) − 2.96 ap × Q − 1.63 ap × (NP%) 

+ 0.0681 Q × (NP%) 
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The cutting force values obtained during slot milling under MQL + NP conditions 

reveal that the maximum value of cutting force was 285.6 (N) and the minimum value 

was 78.3 (N), as shown in Table 5.  

Fig. 10 presents 3D surface plots of the cutting force. One can see that increasing feed 

and depth of cut values result in increase of cutting force. However, the influence of 

cutting force does not exist, as it is nearly horizontal. Additionally, as flowrate and 

nanoparticle concentration increase the cutting force is reduced. This finding supports 

the ANOVA results for cutting force as shown in Table 7. 
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Fig. 10. Response plots for cutting force 

Experimental results indicate that surface roughness is affected by the control 

parameters used during the slot milling process. It was found that as feed per tooth 

increases, surface quality deteriorates. This outcome agrees with the results of 

previous studies (Sun et al., 2006). The lowest and highest roughness values under 

MQL + NP conditions were 0.219 μm and 0.571 μm, respectively.  

To observe the effects of control parameters on roughness under MQL + NP 

conditions, Ra values versus control parameters are plotted in Fig. 14 as 3D contours, 
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as well. It can clearly be seen from the plots that surface roughness increases with 

increased feed, and depth of cut, however it reduces with increased flow rate and 

nanoparticle concentration.   

 

 

 

Fig. 14. Response plots for surface roughness 
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3.3.  

Influence of hBN concentration and MQL flow rate  

To achieve a better understanding of the effectiveness of adding hBN to cutting fluid 

during MQL, cutting force and surface roughness were compared under fixed 

machining parameters (Vc = 65 m/min, f = 0.035 mm/tooth, ap =1.5 mm and Q = 29.5 

ml/h) with various hBN concentration values (0.25%, 12.5%, and 24.75%). Fig. 15 

reveals that an increasing concentration of hBN in cutting fluid leads to a decrease in 

cutting force and roughness. Notably, MQL with a concentration of hBN of 24.75% 

results in large reductions of 19.8% for cutting force and 35.24% for surface 

roughness. The lowest reductions are 17.81% for cutting force and 27.53% for 

roughness with nanoparticle concentration of 24.75%.  

These results clearly prove that surface quality can be improved drastically while 

reducing cutting force as well, by adding hBN nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 15. Influence of hBN NP concentration on cutting force and surface roughness 
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In the same context, comparisons were performed to clarify the effects of various 

fluid flow rates to cutting force and surface roughness under the same milling 

conditions above, with similar values of hBN concentration. In Fig. 16, a trend can be 

observed in which an increasing flow rate of cutting fluid leads of a decrease in both 

cutting force and surface roughness as well. When milling with a flow rate of 40.11 

ml/h, cutting force and roughness are reduced by 42.55% and 28.47%, respectively, 

compared to a flow rate of 18.885 ml/h.    

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Influence of MQL flow rate on cutting force and surface roughness 
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4. Multi-objective optimization using PSO for energy efficiency 

 

Approximately 15% to 35% of energy consumed by a CNC Machine tool is used 

directly in cutting process, whereas the rest is used for auxiliary and idling functions 

such as machine cooling, coolant systems, pumps, tool change and PC/control 

systems (Gutowski et al. 2006). Just idling energy can be as large as 60% with 

advanced, high precision machine tools with multi-processing capability 

(Moradnazhad and Unver 2017). 

Optimization of energy consumption often requires multi-objective approach, since 

sole objective of energy reduction will conflict with other operational objective such 

as material removal rate, surface quality (Lu et al. 2016, Serin et al. 2019) and 

production economics (Li Congbo et al 2017). As MQL augmented by hBN both 

reduces surface roughness and cutting force which effects overall energy efficiency, 

hereon it is critical to use a multi objective approach to investigate the trade-off 

between surface quality and energy efficiency. Hence, it would be possible to 

generate manufacturing scenarios for industries which demands high precision but 

also aims for boarder sustainability goals, including waste reduction and energy 

efficiency. 

In this study, multi-objective particle swarm optimization (MOPSO) was selected 

because it is relatively easy to implement for solving problems featuring multiple 

objectives and nonlinearity.  PSO is inspired from the social behaviors observed in 

animal swarms. In PSO, every solution is called a particle. Particles fly through the 

search space to find a global optimal solution. Particles update their velocities based 

on their previous experience within the search space. Three parameters are responsible 

for updating the velocities of particles, namely social, cognitive, and inertia 

parameters. The social parameter accounts for finding the global best (gbest) position 

for a particle, meaning it accelerates particles to reach the best position. The cognitive 

parameter moves particles toward the personal best (pbest) solution, which is best 

position found up to any given iteration. By comparing the pbest and gbest positions, 

the gbest position can be updated iteratively. Equation (1) is adopted to determine 

when gbest should replace pbest and Equations (4) and (5) are used to compute the 

next position of the ith particle.  
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𝑣𝑖
𝑘+1 = 𝑤. 𝑣𝑖

𝑘 + 𝑐1. 𝑅1. (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑘) + 𝑐2. 𝑅2. (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑘)                         (4) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 +  𝑣𝑖
𝑘+1,                                                                                                (5) 

 

where K is the iteration number, vk
i is the velocity of the ith particle, w is inertia 

weight, c1 and c2 are the learning rates, and R1 and R2 are two random numbers in 

the range [0, 1]. 

As the problem was modeled as MOPSO with 2 objective functions which were 

outputs of the RSM regression; f1(x) for surface roughness given in Equation (2) and 

f2(x) as specific cutting energy (SEC), computed with Equation (7), by using cutting 

force given in Equation (3) , Hence multi objective problem with its constraints can be 

defined as follows: 

 

Minimizing {f1(x), f2(x)}, such that                      (6) 

         56.835   ≤ Vc ≤ 73.165 

         0.0105   ≤ f   ≤ 0.05949 

         0.6835   ≤ ap ≤ 2.3165 

         18.8855 ≤ Q ≤ 40.1145 

          0.2525 ≤ NPs ≤ 24.7475 

 

SEC is calculated using cutting force using Equation (7), as given below. 

 

𝑆𝐸𝐶 =
𝐹𝑐 𝑉𝑐

𝑓 × 𝑎𝑝 × 𝑎𝑒
, where ae is the cutting width.                                                (7)  

This problem was solved using the MOPSO algorithm implemented in MATLAB. 

Following execution of the MOPSO algorithm, the Pareto frontier converged to a set 

of solutions in the multi-objective domain. All possible solutions were plotted in a 

variable domain representing the optimal level of each parameter. Simulations were 

performed using a particle swarm population of 250 and maximum number of 

iterations of 500 with varying learning rates. After obtaining the best particle value in 
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each iteration, the particles were plotted in a 2D objective space for observation. This 

procedure was repeated until a clear Pareto frontier formed. Table 9 lists the 

parameters used for MOPSO. The developed MOPSO algorithm are presented in Fig. 

17. The final non-dominated Pareto optimal curve and solution space are presented in 

Fig. 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Flow chart for the MOPSO algorithm 

 

Table 9 MOPSO Parameters 

Number of Parameters  5 

Number of Iterations 200 

Population Size 500 

Inertia weight (w) 0.9 

Personal Learning Coeff.(c1) 2.5 

Global Learning Coeff (c2) 1.5 

Xmin [56.8    0.0105     0.684      18.885       0.2525 ] 

Xmax [73.2    0.0594     2.316      40.115      24.7475] 

For each particle 

Update V 

Next Iteration 

Next particle 

PSO Initialization 

If (x) < f(gBest) 

gBest =x 

If (x) < f(pBest) 

pBest =x 

Update x 

Evaluate f(x) 

Satisfy Termination 

Criterion 

Solution is gBest 

N 

Y 
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To validate the MOPSO algorithm results, three experiments were carried out using 

three distinct locations on the Pareto curve, which identifies possible manufacturing 

strategies for distinct industries, as such; Scenario 1) High Precision, Scenario 2) 

Overall Sustainability, Scenario 3) High Energy efficiency. The errors between the 

MOPSO results and experimental values were calculated using Equation (8). The 

results of the validation experiments and the calculated errors are listed in Table 10. 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =  |
Experimental value −  MOPSO results

Experimental value
|  × 100          (8) 

 

 

Fig. 18.   Pareto optimal solution set resulted by MOPSO 
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Table 10 Comparison of MOPSO and experimental results 

 
MOPSO optimal values 

Surface roughness 

(µm) Error 

(%) 

SEC (J/mm3) 
Error 

(%)  Vc 

(m/min) 

f 

(mm/tooth) 

ap 

 (mm) 

Q  

(ml/h) 

NPs 

(%) 

PSO 

result 

Exp. 

result 

PSO 

result 

Exp. 

result 

Sn1 56.8 0.0105 2.2 40.1 12.15 0.13 0.13 2.87 7.134 6.99 1.93 

Sn2 73.165 0.0105 1.9 18.8 0.252 0.24 0.23 3.79 3.946 3.91 0.87 

Sn3 73.165 0.0105 0.81 18.8 0.252 0.37 0.37 2.37 1.154 1.17 2.03 

 

5. Conclusions 

This study explored the performance of slot milling of a Ti-6Al-4V under MQL with 

various concentrations of hBN nanoparticles and investigated the influence of 

machining parameters on surface quality and cutting forces. The ANOVA and RSM 

were utilized to analyze the influence of machining parameters on responses. 

Furthermore, the RSM regression results and MOPSO were combined to further 

improve energy-efficiency of the process. The results of this study can be summarized 

as follows: 

1. A total of 33 randomized runs are performed for slot milling Ti–6Al–4V, based 

on central composite design using cutting velocity, feed, depth of cut, flowrate 

and nanoparticle concentration as control factors.  

2. ANOVA results revealed that feed is the most influential factor on both cutting 

force and surface roughness, as directly proportional. Furthermore, it was 

identified that both cutting force and surface roughness increases as depth of cut 

is increased, and it decreases if flowrate and nanoparticle concentration is 

increased. 

3. MQL combined with hBN nanoparticles proved to be an effective solution and an 

alternative approach to improving cooling conditions during the machining of 

Ti–6Al–4V in terms of reducing surface roughness and cutting force compared to 

plain MQL. Increasing the flow rate of cutting fluid to 40.1145 ml/h when 

milling under MQL + NP conditions led the least cutting force and increasing 

nanoparticle concentration to 24.75% led to best surface roughness. 

4. In order to achieve boarder sustainability, MOPSO were applied to further 

improve energy efficiency of the MQL + NP milling process. A Pareto frontier 

was generated which signifies the trade-off between surface quality and energy 

consumption. Using the frontier, 3 scenarios were selection for verification. With 
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maximum 3.79% error, the experimental verification proved that developed RSM 

regressions and MOPSO results are acceptable. 

5. Verified scenarios could be different machining strategies for various industries 

rely on machining of Ti–6Al–4V. Scenario 1) High Precision, is critical for 

aviation and defense industry, which use titanium alloy parts in critical 

components such as engines, that requires high precision and surface quality. 

Energy efficiency is secondary interest for such firms. Scenario 2) Overall 

Sustainability, would be preferable for household goods industry, such as 

appliance manufacturers. These companies, such as Arçelik A.Ş. in Turkey 

(Uluer et al. 2016), relentlessly work for improving their overall sustainability 

scorecards in terms of both reduction of waste and boosting energy efficiency in 

their factory operations and many of their products require reasonable surface 

precision of parts, as well. Scenario 3) High Energy efficiency can be utilized for 

industries where energy efficiency and associated costs are critical for survival. 

These would be first or second tier suppliers of automotive industry, that produce 

non-critical parts and very cost sensitive in business nature. 

5.1 Implications on theory and practice for sustainability 

In order to enhance thermal properties of fluids, nanoparticles have been investigated 

by many scholars since last decade. Ozerinc et al. (2010) summarized experimental 

studies of thermal conductivity enhancement of particle types such as Al2O3, SiO2, 

SiC, TiO2, Al2Cu, DWCNT, MWCNT (without any note of hBN). The main reason is 

that suspended particles increase the surface area and the heat capacity of the fluid. 

Among all the particle types, maximum enhancement was achieved by MWCNT with 

79%. Sharma et al. (2016) reviewed use of similar nanoparticles with various base 

fluids during tuning, drilling, milling and grinding, and concluded that nanoparticle 

addition to cutting fluid reduces the cutting force, surface roughness and cutting zone 

temperature and tool wear. 

Hexagonal Boron Nitride is one of the least utilized nanoparticles for thermal 

enhancement, yet. As a recent study, Ilhan et al. (2016) investigated heat transfer 

enhancement and viscosity change of hBN nanofluids and concluded that hBN shows 

a remarkable thermal conductivity increase for dilute suspensions. Our study 

contributes to research on hBN applications by using it with MQL for machining of 

difficult-to-cut alloys. Our investigation on effects of output measures agreed with 
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similar nanoparticle enhanced MQL machining research, where cutting forces and 

surface roughness is reduced with increasing particle concentration and flowrate. 

To achieve overall sustainability, for many industrial firms, reduction of waste such as 

coolants is required but not sufficient. The efforts to make MQL more enhanced with 

nanoparticles, may lead to its wider adoption by manufacturing industry. However, 

achieving good surface quality still require further optimization of cutting parameters 

such as feed and depth of cut. While these parameters must be lowered to achieve 

better surface quality, energy efficiency of the operation will be impacted. Hence, it is 

imperative to keep energy efficiency under control, based on operational objectives of 

the company, whether on or not advanced techniques are used for coolant reduction. 

In order to fulfill this multi-objective problem, a novel MOPSO algorithm was 

developed. The output Pareto curve indicated several regions which can be adopted by 

different industries, in order to achieve sufficient surface quality per part 

requirements, without sacrificing energy efficiency. However, other barriers, for 

reaching overall sustainability exists by industry. Preparation of nanoparticle 

suspension is still time consuming and costly, furthermore stability of the nanofluid 

may not be good enough for industrial settings. These issues need to be worked out 

for wider industrial adoption. More comparative academic studies of hBN against 

other nanoparticles should also be performed in machining, to prove it superiority. 

Particularly for Turkey, potential application areas of hBN could be very beneficial 

from economic standpoint, as Turkey supplies 59% of worldwide Boron demand 

(https://www.enerji.gov.tr/tr-TR/Sayfalar/Bor). As Turkey continues to expand its 

manufacturing footprint in many industries, future research can be fruitful on hBN, 

with more detailed property and parameter effect analysis such as particle size or base 

fluid under MQL for a variety of other material removal processes. 
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