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Intramolecular reorganization energy (RE), which quantifies the electron-phonon coupling

strength, is an important charge transport parameter for the theoretical characterization of molec-
ular organic semiconductors (OSC). On a small scale, the accurate calculation of the RE is trivial;
however, for large-scale screening, faster approaches are desirable. We investigate the structure-
property relations and present a quantitative structure-property relationship study to facilitate the
computation of RE from molecular structure. To this end, we generated a compound set of 171,
which were derived from the known p-type OSCs built from moieties such as the acenes, thio-
phenes, and pentalenes. We show that simple structural descriptors such as the number of
atoms, rings or rotatable bonds only weekly correlate with the RE. On the other hand, we show
that regression models based on the more comprehensive representation of the molecules such
as the SMILES-based molecular signatures and geometry-based molecular transforms can pre-
dict the RE with a coefficient of determination of 0.7 and mean absolute error of 40 meV in a
library, in which the RE ranges from 76 to 480 meV. Our analysis indicates that a more extensive
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compound set for the training is necessary for more predictive models.

1 Introduction

Organic semiconductors (OSCs) show remarkable
(opto)electronic properties such as semiconductivity, electrolu-
minescence, or photovoltaic effect, Owing to their potential for
solution processibility and compatibility with flexible substrates,
they are ideal for low cost, flexible electronics23, Moreover, the
versatility of carbon allows for the discovery of new materials
in a vast chemical compound space. Computational screening
can facilitate the discovery of new OSCs by helping explore this
chemical space at a low cost®'Z,

The understanding of the relationship between molecu-
lar/crystal structure and charge transport is crucial to facili-
tate the synthesis of high-performance organic semiconductors
(OSCs). However, a thorough de novo multi-scale study of charge
carrier mobility in OSCs is a formidable task, especially for screen-
ing a large library of compounds. An alternative approach adapts
a computational funnel, in which the resources are gradually
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focused on more promising molecules®®. For the preliminary
screening, quantitative structure—property relationship (QSPR)
models that can predict material properties according to easily
calculated descriptors based on the ground-state molecular struc-
ture are indispensable.

Here we focus on the reorganization energy (RE) as a such
parameter for large-scale screening®1%, The thermal hopping
picture allows for a rapid evaluation of the RE at the molecular
level. Unfortunately, it has only limited applicability (i.e. for ma-
terials with mobility values < 10-2cm?/Vs)™L. Despite the fact,
the magnitude of the electronic coupling term in comparison to
the magnitude of the RE is important for the determination of the
charge transport regime 1213 For single crystalline materials with
strong electronic coupling, the decrease in the mobility as a func-
tion of increasing temperature, has been shown to be a result of
the localization of the charges due to the modulation of the elec-
tronic coupling terms, not because of the reorganization energy.
However, in these models the larger RE results in lower mobility
values®2. For these reasons, as well as for its importance in the
charge carrier hopping, the strategies to adapt RE as a parame-
ter for preliminary large-scale screening is of value. We should
note however that charge transport performance of materials are
ultimately decided by the crystal structure and ensuing charge
transport mechanisms.

Although gas-phase quantum chemical intramolecular RE cal-
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culations are trivial on a small scale, for large-scale screening,
faster calculation schemes are highly desirable. In this article,
we present a new data set to explore the structure-property re-
lationships as well as models for the prediction of the RE from
molecular structure for the p-type OSCs. If successful, such QSPR
models might enable the use of the RE as a screening parameter
in high-throughput approaches to choose the best candidates for
further higher level theoretical studies.

For data-driven materials research, reliable data sets for model
training is crucial. However, most of the RE data for the experi-
mentally realized molecules is thinly spread in the literature. To
date, there is no comprehensive data set which would enable sys-
tematic studies based on the RE. Moreover, available quantum-
chemical data are obtained at various levels of theory, therefore,
it is hard to draw general trends in the structure-property rela-
tionship studies.

To the best of our knowledge, only two other attempts were
made predicting the RE by using a QSPR methodology. In one
study, Misra et al. developed QSPR models for structure-mobility
predictions for a library including only polyaromatic hydrocar-
bons (PAHs)1Y. Another smaller scale study# used neural net-
works to predict the RE values for hole and electron hopping in
carbon nanotubes. Both of the previous studies used compound
libraries built only from fused benzene rings. Here we extend the
structure-property study into a more diverse set of compounds
which include many state-of-the-art molecular OSCs.

In this work, first we focus on the so called interpretable QSPR
models. These models relate the molecular and electronic struc-
tural features of the molecules with the intramolecular RE. The
intuition for these models usually stem from chemists’ observa-
tion that certain structural features lead to predictable behavior
of the target property in a small set of molecules. It is of interest
how these trends are manifested in large and diverse compound
sets. Second, we investigate the regression models, in particular
partial least squares (PLS) and principle component regression
(PCR), which are built using more systematic representation of
molecules, where each atom, bond or a connection type is in-
cluded in the structural coding. We showed that despite the small
size of the molecular library, these models show promising pre-
dictive potential.

1.1 Molecular Library

Since the development of the first OFET with a polythiophene
thin-film active layer!'®, many heteroarene- and acene-based com-
pounds have been synthesized as p-type OSCs for transistor ap-
plications1®. Over the years, compounds such as the pentacene,
oligothiophenes and their solution-processable forms gained a
benchmark status. The thienoacenes, which are built from thio-
phene and acene units, emerged as high-performance and high-
stability OSCs1Z. Therefore, we mostly restricted our library to
the experimentally known acenes, thiophenes, and thienoacenes.
A few compounds with the antiaromatic pentalene moiety were
also included for variety!¥. In addition, we included building
blocks, such as the smaller acenes and thiophenes, and a few
molecules from published computational screening studies. ESI
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Fig. 1 Calculation of the reorganization energy from the neutral and
cation potential energy surfaces for pentacene.

Table 1 lists all 171 molecules included in this study in the order
of increasing molecular weight, along with the electronic data
and previously available RE values for comparison. This work
presents the most comprehensive RE data to date for the experi-
mentally known p—type molecular OSCs.

1.2 Reorganization Energy

The RE is the total energy due to the deformation of the lattice
and molecular structure as the charge moves. In the limit of
the small electronic coupling, the largest deformation occurs in
a molecular site; the charge spends a sufficient amount of time
on the site so that the molecule can relax into its optimum ge-
ometry. As such, the RE can be calculated as the total of internal
(intramolecular) and external (intermolecular) contributions as:
A = Aint + Aexr, where A;;; can be approximately calculated using
gas-phase geometry deformations upon charging’?. The exter-
nal contribution A,y is more challenging to calculate or measure
and highly dependent on the morphology2%*22, Although it is not
possible to accurately describe the charge transport without the
inclusion of A.y2L for the preliminary screening purposes, the
Aie can be sufficient?19,

By assuming a self-exchange hole transfer reaction, such as
A+AT —AT+A, the reorganization energy can be calculated as
A=ES—E}+E!—E{. Here, El] refers to the energy of the charge
state j calculated at the optimized geometry i such that Ef is the
energy of the cation at the optimized neutral geometry. Those
points over the potential energy surfaces are labeled in Figure
summarizing the computational scheme for pentacene molecule.
This scheme requires the optimization of the ground and cation
states of the molecules in the gas phase, and two additional sin-
gle points on the ground and cation potential energy surfaces2.
The most expensive step in this scheme is the calculation of the
Hessian matrices of the optimized geometries necessary to ensure
a true minima [l

+ For example, for the molecule number 109 in ESI Table 1 (232 electrons), out of 45
hours of computing time at the level of B3LYP/6-31G(d,p), approximately 8 were
dedicated to the Hessian calculation for the neutral ground state and 31 were dedi-
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It is well known that the density functional theory calculations
are heavily influenced by the chosen density functional; for ex-
tended molecules, the range-separated tuned functionals gives
better theoretical estimates for the RE. Nevertheless, B3LYP func-
tional employed here usually produces the RE trends in the p-type
0SCs correctly?3, hence widely used in charge transport studies
of the OSC materials%%. Although the experimental RE data for
comparison is very limited, the values calculated from B3LYP/6-
31G(d,p) level of theory, compares well with the gas-phase pho-
toelectron spectroscopy experiments, for example, in pentacene
and perfluorpentacene?2,

All the density functional theory calculations were performed
using the Q-Chem software package22 at the level of B3LYP20/27
with a gaussian basis 6-31G(d,p)28%3% without any symmetry re-
strictions. The spin contamination in the cations were always less
than 7%. All minima was ensured with the absence of negative
vibrational frequencies through frequency analysis.

1.3 Molecular representations

The molecules were first written as SMILES strings=1 and then
represented as vectors either in the structural and electronic de-
scriptor, graph-based signature descriptor2 or molecular trans-
form descriptor3 spaces. The signatures were obtained from
the SMILES, whereas the molecular transforms require 3D ge-
ometries. In particular, we explored the molecular transforms
obtained from MMFF94=4 force field and density functional the-
ory optimized geometries. In either case, the ground state neutral
molecular structures were used. For the molecules with a rotat-
able bond, we chose only the lowest energy conformer.

The signature descriptors code the neighborhood of each atom
in a molecule, starting with its immediate neighbors, and could
be generated up to a desired height 4. For example at 4 = 0, only
the atom itself is included, and at height 4 = 1, its immediate
neighbors are also included. Once all the atomic signatures of a
molecular set are identified for a particular height, each molecule
could be represented as an array storing the frequency of each
atomic signature in the molecule. Hence, for a molecular set of
size N, a matrix with size of N x Nj;, is obtained, where Ny is
the total number of unique atomic signatures identified for the
set. For simplicity, we call the total of number of signatures at a
particular height n as oyg,.

The number of unique signatures necessary to describe the set
increases rapidly. For example, in our molecular set, at oy, there
are only three signatures for sulphur, carbon, and hydrogen atom
types. At Gx01, 002, Ono3 and and o4, there are 16, 115, 590 and
1604 signatures respectively. Previously, signatures up to height 3
(0103) has been identified as the sufficient height to describe the
RE1Y, Therefore, we explored 6,3 and o4 in our analysis.

Naturally, overfitting is a problem when a matrix with a size of
171x605 or 171x1604 to be solved. To combat overfitting, we
explored dimensionality reduction algorithms such as the princi-
ple component analysis and partial least squares.

cated to the Hessian calculation of the cation (calculated with Q-Chem 4.0 on four
Intel Xeon(R) CPU E3-1246 v3 3.50GHz processors).
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As the 3D structure descriptor, we used the molecular trans-
form descriptors introduced earlier by Soltzberg and Wilkins=2,
and later adapted by Gasteiger and coworkers=>. The molecu-
lar transforms, inspired by the X-ray diffraction intensities, are
approximate functions obtained from the 3D atomic coordinates
of the molecules. By assuming that the molecule is a rigid body
and the atoms are point scatterers (no form factors), the 3D co-
ordinates of the molecule with N atoms can be converted into a
molecular transform as follows:

N i—1

I(s)=) ). ZiZ;

i=2 j=1

®

where r;; is the distance between the atoms i and j, Z; is atomic
number for the ith atom and the independent variable s measures
the scattering angle in units of A (s) is an oscillatory function
storing geometry information as vector. (See ESI Figure 1)

One advantage of the molecular transform is the fixed length,
independent of the library size. The length of the molecular trans-
form descriptors depends how fine the parameter s is defined
in the interval [1,31]. We determined that 100 points is a good
length for the regression models we studied.

For generating the molecular signatures, we used scripts devel-
oped by Faulon and coworkers=2, The molecular mechanics ge-
ometries were calculated with the ChemAxon molconvert utility.
The structural descriptors such as the size, number of rings, type
of atoms and bonds as well as the polarizability and van der Waals
surface area were calculated with the cxcalc utility in ChemAxon
suit of programs. The data were managed and analyzed with the
modules such as the statsmodels=® and scikit learn” available in
Python language®3€.

2 Results and Discussion
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Fig. 2 Histogram of the intramolecular reorganization energies for the
molecule set.

The calculated RE values range from 76 to 480 meV, positively
skewed as expected from high-performance OSCs (see histogram
in Figure[2). The ground-state highest occupied molecular orbital
(HOMO) energies show a distribution typical of the p-type OSCs
with an average of —5.22 eV (See Figure[3).

The electronic data confirms the earlier HOMO eigenvalue dif-
ference descriptor derived from the neutral and cation HOMO en-
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Fig. 3 Histogram of the HOMO energies for the molecule set. Mean=
—5.224+0.31 eV.

ergies as /om0 — ghomollll (Figure ). The cation HOMO energy,
ghomo | refers to the energy at the HOMO energy for the optimized
cation. Although this descriptor shows a very strong correlation
with the RE, since we would like to limit the set of descriptors
we can use only to the ground neutral state of the molecules, it is
unsuitable for our QSPR methodology.

Taherpour et al.14 used both the adiabatic and vertical ioniza-
tion potentials for the prediction of RE. Figure|[4b shows the RE as
a regression of the difference between these ionization potentials.
This difference is equal to the reorganization of the nuclei as the
cation species form and relaxes into the optimum cation geome-
try2?40, which could be formulated as ES — ES according to the
potential energy surfaces shown in Figure[1} It is, approximately,
the half of the RE as shown in Figure dlwhen similar relaxation en-
ergies are observed for the neutral and cation species. As shown
in Figure [p, except for some of the high RE molecules which
have an asymmetry in the relaxation of the charge donor and ac-
ceptor upon the vertical transitions and deviate slightly from the
linear fit, the RE could be predicted from a linear relationship.
Again, since we focus here only on the neutral state descriptors,
this difference (IP,e;; — IP,4;,) is not useful for us as a descriptor.

First, we investigated the correlation of the electronic parame-
ters with the RE. The total electronic energy, HOMO and LUMO
energy values and the vertical IP present a weak correlation with
the RE. These descriptors, which are also correlated with each
other, were not enough by themselves to establish a model for the
prediction of the RE. Another electronic descriptor, potentially im-
portant for molecular electronic materials, is the polarizability4.,
However, we show in Table [1] that the average molecular polar-
izability does not correlate with the RE. As explained above, we
cannot use the adiabatic and vertical IP in the same model. More-
over, since the computation of the adiabatic IP requires the cal-
culation of the optimum cation geometry, it does not satisfy our
criteria that the descriptors should solely be calculated based on
the neutral ground state of the compounds.

Owing to the importance of the RE, the structural factors affect-
ing the magnitude of the RE drew considerable attention2442-46|
for example, the length of the molecule®7 or the presence of
rotatable bonds4048:49  However, these observations are usually
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Table 1 Pearson’s r values for the correlation of the RE with electronic
descriptors

Descriptor Pearson’s r  p-values
E, -0.20 0.0086
ghomo -0.20 0.0086
glumo 0.16 0.03
ghomo 0.076 0.32
glumo 0.046 0.55
IPgiq 0.088 0.25
IPyers 0.19 0.014
Average Polarizability -0.053 0.49

Table 2 Pearson’s r values for the structural descriptors

Descriptor Pearson’s r  p-values
Fused ring count -0.46 1.5e-10
Rotatable bond count 0.44 2.1e-9
Sulphur atom count 0.34 4.4e-6
van der Waals surface area  -0.052 0.50
Ring count -0.22 0.0046

limited to a small series of compounds. For example, the RE
decreases in a series of compounds from the shorter to longer
oligomers4® or acenes“”4?, In a compound set with diverse
molecular shapes, these simple structural features are not descrip-
tive enough by themselves for a highly predictive QSPR model?,
Nevertheless, to observe the relationships in our data set, we
investigated the correlations of the RE with the structural de-
scriptors such as the number of (fused)rings, number of rotat-
able bonds, van der Waals surface area and sulphur atom count.
Pearson’s r values for these are tabulated in Table [2| The largest
correlation belongs to the fused ring count with —0.46; the ro-
tatable bond and sulphur atom count follow with 0.44 and 0.34,
respectively.

We investigated the multiple linear regression (MLR) models
built with the structural descriptors having the p values smaller
than 0.01 as well as some of the electronic descriptors. In the ESI
Table 2, we show the correlation diagram of the electronic and
structural descriptors with each other and the RE. Many of the
variables show a high correlation among themselves. Moreover,
their correlation with the RE is weak. Only a few of these de-
scriptors could be included in a model at a time with descriptive
behaviour, a.k.a. with low p values.Therefore it was a challenge
to obtain a predictive MLR model with these set of descriptor vari-
ables.

The best performing MLR model with the structural and elec-
tronic descriptors when all of the data points were fitted to
the model had an R* of 0.49 (R}, = 0.48) (logA = 2.661 —
0.496 £/ (eV') —0.055 Ring count +0.077 Sulphur atom count -
0.141 Rotatable Bond Count). The test set performance was mea-
sured by randomly splitting the data into the test and training sets
in the proportion of 20/80, respectively. The average is obtained
from 100 runs. The root mean squared error for the prediction
of the RE values for the test set was quite large: 72 + 10meV
and R? = 0.31 £0.24. Due to this low performance, we inves-
tigated other descriptors which encode the molecular structures
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Fig. 5 The RE values (meV) of the compound set scattered in the first
two principle components for the signatures up to the height 3, o3

Unlike the descriptors used in the MLR model, the signatures
encode the structural features of the molecules systematically in-
cluding all atoms and the bond types, in the case of the molecular
transforms, also information about the 3D geometry to a certain
extent. However, still two major issues emerge: 1) Large size of
the descriptor space, especially when compared to the library size
2) Correlation/collinearity in the descriptors. A transformation
of the descriptor space onto a set of orthogonal principle compo-
nents, such as in the case of principle component analysis (PCA)
might help combat both these issues at once. By careful analysis
of the train and validation set errors, it is possible to determine
the necessary number of the principle components for a model
that does not overfit. We report the results from this type of re-
gression as principle component regression, PCR.

The distribution of the molecules labeled according to the RE
values in the first three principle components for o3 is shown
in Figure|5| (The ratio of the variance explained by each princi-
ple component is shown in ESI Figure 2). The color distribution
indicates that the components can help organize data according
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to the magnitude of the RE. We observed a similar distribution
for a deeper signature set, oy,04. However, the principle compo-
nents of the molecular transforms did not organize the molecules
in a meaningful way related to the RE values. Therefore, the PCR
models based on the molecular transforms are not included.

The principle components are chosen to explain the variance
in the descriptor space only, thus not very effective in the pre-
diction. As an alternative regression approach, we investigated
partial least squares (PLS) algorithms. The advantage of the PLS
method is that a set of vectors which capture most of the variance
in the descriptors is found while the correlation between the de-
scriptor space and target RE values also taken into consideration.
For the PLS implementation we used the default version in python
scikit learn (NIPALS algoritm).

The results from the both regression methods could be found in
Table (3] The data for the test performances are obtained by 5-fold
cross validation (20% test). The computations are repeated 100
times through random shuffling to gather enough statistics. In
parenthesis are the number of principle component vectors (PCR)
or latent variables (PLS) chosen with cross-validation. These
numbers corresponds to the number of vectors included in the
models for which the test set performance reported.

The best test performance belongs to the PLS models with the
signature descriptors. The performance of the two signature lev-
els, oj03 and o4, are close. These results improved upon our
earlier MLR models and the prediction statistics were compara-
ble to the previous models’?. However, the discrepancy between
the test and train performances especially in the PLS models are
large and show that one avenue for the improvement of the mod-
els could be the expansion of the data set. On the other hand, the
PCR models showed less predictive accuracy than the PLS mod-
els as expected. In those models, the train and test performances
were similar. The molecular transforms based on the DFT opti-
mized geometries, were significantly better both in the test and
train sets than the MMFF94 predicted geometries. The Spearman
rank correlation coefficients show that the ranking based on the
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Table 3 Coefficient of determinations (R?), Spearman rank correlation coefficients (p), and errors of the predicted RE from molecular signature and

transform descriptors

Descriptor type ~ Model® R .. RZ,, p,bank RMSE?  MAEP
Signatures 003
PLS (5) 0.96+0.00 0.694+0.09 0.814+0.06 55+8 41+6
PCR (8) 0.62+0.02 0.574+0.09 0.78+0.06 5748 43+6
004
PLS (8) 0.99+0.00 0.704+0.09 0.82+0.06 5448 3947
PCR (16) 0.67+£0.02 0.58+0.10 0.79£0.06 56+7 42+6
Transforms DFT
PLS (7) 0.85+0.01 0.66+0.12 0.81+0.06 60415 4347
MM
PLS (5) 0.79+0.01 0.62+0.11 0.774£0.07 6049 4446

@ Numbers in parenthesis represent the size of the descriptor space. © The root-mean-squared-error (RMSE) and mean absolute error
(MAE) in meV. The statistics obtained from 100 runs, where data is shuffled randomly each time.

a
o
o
\,

/‘// +
=400 | 0 s 200 | y=52.4—3.26x
Q °® ® - ® S‘
‘E’ .‘ .’/./. §i56 g
® 4 ]
X300 o s ¢ E1501 . R
14 ¢ ® ¢
ko] ® * oo ® §00 ggo g +
2 o 3 %3 o 5 .
5 200 e ""’s. ¢ 20 ¢ .
o : 4y =] ; N + +
~ (1Y ® ° ® o] T
o K & 2
e 2 50 N
100 { A g .
100 200 300 400 500 01 i

Calculated RE (meV)

Fig. 6 Comparison of the average predicted and calculated values of RE
with the PLS model at the o904 model. The data is collected from 5-fold
CV with 100 runs. Error bars are the standard deviations. The molecules
with the errors larger than 100 meV are marked with their number in ESI
Table 1.

DFT geometry derived molecular transform is as accurate as the
PLS models for the 63, although the average R, is smaller than
the PLS model.

Finally, we show the pair plot for the best performing model
in Figure @ Some of the outliers (errors larger than 100 meV)
are marked with the numbers of the molecules according to ESI
Table 1. These outliers could be explained to a certain extent
in terms of molecular similarity. For example, the molecule 140
stands out with a large overestimation. This is not surprising since
this molecule has a sulfur atom with bonding pattern which does
not exist in any of the other compounds. Therefore, the training
of the model does not cover the pattern of this molecule. The
same could be said for the molecule 26 with the unusual annu-
lene pattern. There is again a large error for the molecule number
1, the thiophene ring, the only monocycle in the library. The pre-
dictions for the molecules with two rings, thienothiophene (3),
and dithienyl (5) are also poor. On the other hand the prediction
error for the diphenyl or naphthalene is not large, although there
is not many molecules with two rings in the library.

Due to the difficulty of the analysis of each molecule one-
by-one and conflicting observations such as mentioned above,
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Fig. 7 Absolute error (meV) in the RE for a molecule, as a function of the
number of molecules with Tanimoto coefficient larger than 0.85.

we systematically investigated the hypothesis that a molecular
(dis)similarity is correlated with the errors as follows. First, we
calculated a similarity matrix for all of the molecules based on
the Tanimoto metric. Then we counted the number of similar
molecules for each molecule with Tanimoto index cutoff of 0.85.
We show a regression of the absolute error over this counts in the
Figure Albeit small, we observe a negative slope for the fit,
indicating that for most molecules with a high count of similar
molecules, we observe smaller errors.

3 Conclusions

We presented a new library for the computed reorganization en-
ergy values for the experimentally known OSCs and investigated
several regression models for the prediction of the RE from molec-
ular structure. Our best model was the PLS regression based on
the molecular signature descriptors. We observed that the size
and the diversity of the training set is crucial for the establish-
ment of the predictive and generalizable models. The discrepancy
between the test and train performances in the PLS models indi-
cates that to reduce the model bias, a larger molecular library will
be necessary. We estimate that the library size need to be at least
in the order of thousands of compounds. The construction of a
library of this size restricted to the known OSC molecules can be
challenging, and hence a combinatorially generated training set

This journal is © The Royal Society of Chemistry [year]



with potential OSC molecules might be necessary.

Nevertheless, for the present molecular library, the prediction
accuracy of the models (RZ,, up to 0.7) with the descriptors based
on the ground-state properties of the compounds is remarkable as
the RE is a parameter that measures the difficulty of a molecule
to go through exchange of holes. Therefore, any higher accuracy
prediction should include the effects of the adjustment of the nu-
clei on the charging process. Work is underway in our laboratory
in the direction of the extension of the library and investigation
of higher level molecular descriptors for the representation of the
molecules. This work also illustrates the potential of the present
approach for the prediction of the RE for electron and exciton
transport materials.
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