Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/12722
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAdiguzel, Ece Selin-
dc.contributor.authorAlmaci, Ayse-
dc.contributor.authorEren, Doruk-
dc.contributor.authorYilmaz, Gökçe Nur-
dc.contributor.authorÇimtay, Yücel-
dc.date.accessioned2025-10-10T15:47:28Z-
dc.date.available2025-10-10T15:47:28Z-
dc.date.issued2025-
dc.identifier.isbn9798331566555-
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11111805-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/12722-
dc.descriptionIsik Universityen_US
dc.description.abstractImages taken indoor and/or outdoor can suffer from adverse effects when there is inadequate lighting in the environment. The overall efficacy of computer vision systems may be compromised due to the resultant low dynamic range and elevated noise levels in the images. To overcome this problem, many traditional and deep learning-based enhancement methods have been employed. In terms of deep learning models, to achieve better results, the deep models need to be trained with good quality and rich datasets. Although there are many low-light static image datasets in the literature, there is a lack of multi-level low light image/video dataset. For a live video captured in a low-light environment, the level of the light naturally can change with respect to time. Therefore, the model should also adopt to those different level of low-light conditions. In this study, a new multi-level low-light video dataset is presented. This dataset includes 3 different scenes captured with a color camera under different levels of light. By using this dataset, in this study several state-of-the-art low-light image enhancement methods are tested and compared. © 2025 Elsevier B.V., All rights reserved.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof-- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectContrast Enrichmenten_US
dc.subjectLighting Conditionsen_US
dc.subjectLimited Visibilityen_US
dc.subjectMulti-Level Illuminationen_US
dc.subjectComputer Visionen_US
dc.subjectDeep Learningen_US
dc.subjectLearning Systemsen_US
dc.subjectLightingen_US
dc.subjectAdverse Effecten_US
dc.subjectContrast Enrichmenten_US
dc.subjectIndoor/Outdooren_US
dc.subjectLighting Conditionsen_US
dc.subjectLimited Visibilityen_US
dc.subjectLow Lighten_US
dc.subjectLow-Light Imagesen_US
dc.subjectMulti-Level Illuminationen_US
dc.subjectMultilevelsen_US
dc.subjectVideo Dataseten_US
dc.subjectImage Enhancementen_US
dc.titleDüşük Işık Görüntü İyileştirme Tekniklerinin Karşılaştırılması İçin Kapsamlı Çok Düzeyli Düşük Işık Video Veri Setien_US
dc.title.alternativeA Comprehesive Multi-Level Low-Light Video Dataset for Benchmarking of Low-Light Image Enhancement Techniquesen_US
dc.typeConference Objecten_US
dc.departmentTOBB University of Economics and Technologyen_US
dc.identifier.scopus2-s2.0-105015495836-
dc.identifier.doi10.1109/SIU66497.2025.11111805-
dc.authorscopusid60092927600-
dc.authorscopusid60093046800-
dc.authorscopusid60092812700-
dc.authorscopusid57324189100-
dc.authorscopusid55293396500-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1tr-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeConference Object-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

54
checked on Dec 1, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.