Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/1331
Title: Influence of excitation frequency on structural and electrical properties of spray pyrolyzed CuInS2 thin films
Authors: Demirci Sankır, Nurdan
Aydın, Erkan
Sankır, Mehmet
Bozbey, Ali
Keywords: Copper indium sulfide
Ultrasonic spray pyrolysis
Chalcopyrite film
Solar cells
Nozzle frequency
Publisher: Elsevier Science Sa
Source: Sankir, N. D., Aydin, E., Sankir, M., & Bozbey, A. (2014). Influence of excitation frequency on structural and electrical properties of spray pyrolyzed CuInS2 thin films. Journal of Materials Processing Technology, 214(9), 1879-1885.
Abstract: This paper reports the cost effective deposition of the copper indium sulfide (CuInS2) thin films under atmospheric conditions via ultrasonic spray pyrolysis. Structural and electrical properties of these films have been tailored by controlling the nozzle excitation frequency and the solution loading. Smoother films have been obtained via 120 kHz excitation frequency compare to the 48 kHz. Band gap energy of the films has also been tailored via excitation frequency. UV-vis-NIR analysis revealed that films deposited at 48 kHz excitation frequency had lower band gap energies. Although, both excitation frequencies resulted chalcopyrite structure, crystallinity of the CuInS2 films was better for 120 kHz. On the other hand, better optical absorption in visible and near infrared region was observed at 48 kHz. Moreover, room temperature electrical conductivity of the samples deposited at 48 kHz excitation frequency was higher than that of samples deposited at 120 kHz. Temperature dependent electrical conductivity data showed that variable range hopping mechanism can be used to explain the conduction of spray pyrolyzed CuInS2 thin films. Electrical mobility as high as 48 cm(2)/Vs has been observed for the sample deposited from 0.51 ml/cm(2) loading at 48 kHz excitation frequency. This value is very close to the mobility of vacuum deposited thin films like amorphous silicon, which is one of the most commonly used semiconductor in electronic and energy applications. (C) 2014 Elsevier B.V. All rights reserved,
URI: https://linkinghub.elsevier.com/retrieve/pii/S0924013614001307
https://hdl.handle.net/20.500.11851/1331
ISSN: 0924-0136
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

16
checked on Mar 23, 2024

WEB OF SCIENCETM
Citations

19
checked on Mar 23, 2024

Page view(s)

62
checked on Mar 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.