Please use this identifier to cite or link to this item: `https://hdl.handle.net/20.500.11851/1574`
DC FieldValueLanguage
dc.contributor.authorKhaniyev, Tahir-
dc.contributor.authorGever, Başak-
dc.contributor.authorHanalioğlu, Zülfiye-
dc.date.accessioned2019-07-03T14:44:46Z
dc.date.available2019-07-03T14:44:46Z
dc.date.issued2016
dc.identifier.citationKhaniyev, T., Gever, B., & Hanalioglu, Z. (2016). Asymptotic Rate for Weak Convergence of the Distribution of Renewal-Reward Process with a Generalized Reflecting Barrier. In Intelligent Mathematics II: Applied Mathematics and Approximation Theory (pp. 313-331). Springer, Cham.en_US
dc.identifier.isbn978-3-319-30322-2; 978-3-319-30320-8
dc.identifier.issn2194-5357
dc.identifier.urihttps://hdl.handle.net/20.500.11851/1574-
dc.description.abstractIn this study, a renewal-reward process (X(t)) with a generalized reflecting barrier is constructed mathematically and under some weak conditions, the ergodicity of the process is proved. The explicit form of the ergodic distribution is found and after standardization, it is shown that the ergodic distribution converges to the limit distribution R(x), when lambda -> infinity, i. e., QX (lambda x) [GRAPHICS] P{X(t) <= lambda x} -> R(x) 2/m(2) [GRAPHICS] [1 - F(u)]dudv. Here, F(x) is the distribution function of the initial random variables {eta(n)}, n = 1, 2,..., which express the amount of rewards and m(2) = E(eta(2)(1)). Finally, to evaluate asymptotic rate of the weak convergence, the following inequality is obtained: vertical bar QX (lambda x) - R(x)vertical bar <= 2/lambda vertical bar pi(0)(x) - R(x)vertical bar. Here, pi(0)(x) = (1/m(1)) [GRAPHICS] (1 - F(u))du is the limit distribution of residual waiting time generated by {eta(n)}, n = 1, 2,..., and m(1) = E(eta(1)).en_US
dc.description.abstract[Khaniyev, Tahir; Gever, Basak] TOBB Univ Econ & Technol, Ankara, Turkey; [Khaniyev, Tahir] Azerbaijan Natl Acad Sci, Inst Control Syst, Baku, Azerbaijan; [Hanalioglu, Zulfiye] Karabuk Univ, Karabuk, Turkeyen_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.ispartofIntelligent Mathematics II: Applied Mathematics And Approximation Theoryen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleAsymptotic Rate for Weak Convergence of the Distribution of Renewal-Reward Process with a Generalized Reflecting Barrieren_US
dc.typeConference Objecten_US
dc.departmentFaculties, Faculty of Engineering, Department of Industrial Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümütr_TR
dc.identifier.volume441
dc.identifier.startpage313
dc.identifier.endpage331
dc.authorid0000-0003-1974-0140-
dc.identifier.wosWOS:000377864300022en_US
dc.identifier.scopus2-s2.0-84961711933en_US
dc.institutionauthorKhaniyev, Tahir-
dc.contributor.YOKid17222-
dc.identifier.doi10.1007/978-3-319-30322-2_22-
dc.authorscopusid7801652544-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.dept02.4. Department of Industrial Engineering-
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

CORE Recommender

#### Page view(s)

28
checked on Dec 26, 2022