Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3079
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThe ATLAS Collaboration-
dc.contributor.authorSultansoy, Saleh-
dc.date.accessioned2019-12-27T15:08:12Z-
dc.date.available2019-12-27T15:08:12Z-
dc.date.issued2019
dc.identifier.citationATLAS Collaboration. (2019). A strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experiment. The European Physical Journal C, 79(2), 120.en_US
dc.identifier.issn14346044
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3079-
dc.identifier.urihttps://link.springer.com/article/10.1140%2Fepjc%2Fs10052-019-6540-y-
dc.description.abstractThis paper describes a strategy for a general search used by the ATLAS Collaboration to find potential indications of new physics. Events are classified according to their final state into many event classes. For each event class an automated search algorithm tests whether the data are compatible with the Monte Carlo simulated expectation in several distributions sensitive to the effects of new physics. The significance of a deviation is quantified using pseudo-experiments. A data selection with a significant deviation defines a signal region for a dedicated follow-up analysis with an improved background expectation. The analysis of the data-derived signal regions on a new dataset allows a statistical interpretation without the large look-elsewhere effect. The sensitivity of the approach is discussed using Standard Model processes and benchmark signals of new physics. As an example, results are shown for 3.2 fb- 1 of proton–proton collision data at a centre-of-mass energy of 13 TeV collected with the ATLAS detector at the LHC in 2015, in which more than 700 event classes and more than 10 5 regions have been analysed. No significant deviations are found and consequently no data-derived signal regions for a follow-up analysis have been defined. © 2019, CERN for the benefit of the ATLAS collaboration.en_US
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.relation.ispartofEuropean Physical Journal Cen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCollisions en_US
dc.subject jets en_US
dc.subjectproton–proton collisionsen_US
dc.titleA strategy for a general search for new phenomena using data-derived signal regions and its application within the ATLAS experimenten_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Material Science and Nanotechnology Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümütr_TR
dc.identifier.volume2
dc.identifier.issue2
dc.authorid0000-0003-2340-748X-
dc.identifier.wos WOS:000457998500007en_US
dc.identifier.scopus2-s2.0-85061187220en_US
dc.institutionauthorSultansoy, Saleh F.-
dc.identifier.doi10.1140/epjc/s10052-019-6540-y-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept02.6. Department of Material Science and Nanotechnology Engineering-
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
sultansoy_phenomena.pdf3.46 MBAdobe PDFThumbnail
View/Open
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

11
checked on Mar 25, 2023

WEB OF SCIENCETM
Citations

25
checked on Sep 24, 2022

Page view(s)

38
checked on Mar 20, 2023

Download(s)

14
checked on Mar 20, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.