Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/3916
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaymakçı, O.-
dc.contributor.authorErgin, Elif Büşra-
dc.contributor.authorUyanık, N.-
dc.date.accessioned2020-10-22T16:53:35Z-
dc.date.available2020-10-22T16:53:35Z-
dc.date.issued2020-01
dc.identifier.citationKaymakçı, O., Ergin, E. B., Uyanık, N. (2020, January). Development of cost effective in-situ microfibrillar recycled PET/carbon fiber/polypropylene matrix composites with high mechanical properties. In AIP Conference Proceedings (Vol. 2205, No. 1, p. 020030). AIP Publishing LLC.en_US
dc.identifier.isbn978-073541956-8
dc.identifier.issn0094243X
dc.identifier.urihttps://hdl.handle.net/20.500.11851/3916-
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.5142945-
dc.description.abstractCarbon fibers (CF) are excellent reinforcers for thermoplastic polymer composites owing to their high thermal and mechanical properties. However, their applications are mostly limited to high-end applications such as in aerospace industries due to their relatively higher cost. In this study, it was aimed to improve the properties of CF - polypropylene (PP) composites by supporting the matrix with microfibrillar PETs. Low cost recycled PET (rPET) flakes from used PET bottles were in-situ converted into PET fibers during compounding of carbon fibers and PP matrix. Seven different composites were prepared with different rPET contents up to 15 phr, in order to understand the rPET's effect on the physical and mechanical properties of the composites. Maleic anhydride grafted PP (MA-g-PP) compatibilizer was used to improve interfacial adhesion between PP and both of CF and rPET. Additionally, the effect of the compatibilizer content on the mechanical properties was investigated by studying compounds of varying compatibilizer content (0wt%, 2.5wt% and 5wt%). The CF content was fixed to 10wt% in all composites. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) studies showed the formation of microfibrillar PETs in CF-PP composite matrix. In addition, coupling efficiency of the compatibilizer was investigated. Mechanical characterization results showed that the in-situ formation of rPET microfibrils in CF-PP composites significantly improves the tensile, flexural and Izod impact properties. The orientation of the CFs and rPET microfibrils during injection molding process affect the tensile and flexural strength of the composites. © 2020 Author(s).en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCompatibilizers en_US
dc.subject Polyethylene Terephthalates en_US
dc.subject Polypropylenesen_US
dc.titleDevelopment of cost effective in-situ microfibrillar recycled PET/carbon fiber/polypropylene matrix composites with high mechanical propertiesen_US
dc.typeConference Objecten_US
dc.relation.ispartofseriesAIP Conference Proceedingsen_US
dc.departmentFaculties, Faculty of Engineering, Department of Material Science and Nanotechnology Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümütr_TR
dc.identifier.volume2205
dc.identifier.wosWOS:000555285800030en_US
dc.identifier.scopus2-s2.0-85078770311en_US
dc.institutionauthorErgin, Elif Büşra-
dc.identifier.doi10.1063/1.5142945-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - İdari Personel ve Öğrencien_US
dc.identifier.scopusquality--
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
Appears in Collections:Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü / Department of Material Science & Nanotechnology Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Apr 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Jan 20, 2024

Page view(s)

110
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.