Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6337
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGüler, İnan-
dc.contributor.authorÜbeyli, Derya Elif-
dc.date.accessioned2021-09-11T15:35:54Z-
dc.date.available2021-09-11T15:35:54Z-
dc.date.issued2005en_US
dc.identifier.issn0952-1976-
dc.identifier.issn1873-6769-
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2004.10.002-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6337-
dc.description.abstractIn this study, a new approach based on an adaptive neuro-fuzzy inference system (ANFIS) was presented for detection of ophthalmic artery stenosis. The ANFIS was used to detect ophthalmic artery stenosis when two features, resistivity and pulsatility indices, defining changes of ophthalmic arterial Doppler waveforms were used as inputs. The ophthalmic arterial Doppler signals were recorded from 115 subjects, of whom 52 suffered from ophthalmic artery stenosis and the rest were healthy. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the impacts of features on the detection of ophthalmic artery stenosis were obtained through analysis of the ANFIS. The performances of the classifiers were evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS classifier has potential in detecting the ophthalmic artery stenosis. (c) 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofEngineering Applications of Artificial Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadaptive neuro-fuzzy inference system (ANFIS)en_US
dc.subjectfuzzy logicen_US
dc.subjectdoppler signalen_US
dc.subjectophthalmic artery stenosisen_US
dc.titleAutomatic detection of ophthalmic artery stenosis using the adaptive neuro-fuzzy inference systemen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume18en_US
dc.identifier.issue4en_US
dc.identifier.startpage413en_US
dc.identifier.endpage422en_US
dc.identifier.wosWOS:000228891400003en_US
dc.identifier.scopus2-s2.0-17444432619en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.engappai.2004.10.002-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

17
checked on Mar 25, 2023

WEB OF SCIENCETM
Citations

13
checked on Sep 24, 2022

Page view(s)

10
checked on Mar 20, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.