Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/6395
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜbeyli, Elif Derya-
dc.date.accessioned2021-09-11T15:36:14Z-
dc.date.available2021-09-11T15:36:14Z-
dc.date.issued2009en_US
dc.identifier.issn1051-2004-
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2008.07.004-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/6395-
dc.description.abstractThis paper illustrates the use of combined neural network model to guide model selection for classification of electroencephalogram (EEG) signals. The EEG signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first-level networks were implemented for the EEG signals classification using the statistical features as inputs. To improve diagnostic accuracy, the second-level networks were trained using the outputs of the first-level networks as input data. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified with the accuracy of 94.83% by the combined neural network. The combined neural network model achieved accuracy rates which were higher than that of the stand-alone neural network model. (C) 2008 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc Elsevier Scienceen_US
dc.relation.ispartofDigital Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCombined neural network modelen_US
dc.subjectEEG signals classificationen_US
dc.subjectDiagnostic accuracyen_US
dc.subjectDiscrete wavelet transformen_US
dc.titleCombined neural network model employing wavelet coefficients for EEG signals classificationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Electrical and Electronics Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümütr_TR
dc.identifier.volume19en_US
dc.identifier.issue2en_US
dc.identifier.startpage297en_US
dc.identifier.endpage308en_US
dc.identifier.wosWOS:000263213700013en_US
dc.identifier.scopus2-s2.0-58549111381en_US
dc.institutionauthorÜbeyli, Elif Derya-
dc.identifier.doi10.1016/j.dsp.2008.07.004-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

224
checked on Apr 1, 2023

WEB OF SCIENCETM
Citations

169
checked on Sep 24, 2022

Page view(s)

4
checked on Mar 27, 2023

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.