Please use this identifier to cite or link to this item:
Title: Detection of electrocardiographic changes in partial epileptic patients using Lyapunov exponents with multilayer perceptron neural networks
Authors: Übeyli, Elif Derya
Güler, İnan
Keywords: electrocardiographic changes
partial epilepsy
chaotic signal
Lyapunov exponents
multilayer perceptron neural network (MLPNN)
training algorithms
Mevenberg-Marquardt algorithm
Issue Date: 2004
Publisher: Pergamon-Elsevier Science Ltd
Abstract: In this study, a new approach based on the consideration that electrocardiogram (ECG) signals are chaotic signals was presented for detection of electrocardiographic changes in patients with partial epilepsy. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electrocardiographic changes in patients with partial epilepsy. Two types of ECG beats (normal and partial epilepsy) were obtained from the MIT-BIH database. The computed Lyapunov exponents of the ECG signals were used as inputs of the MLPNNs trained with backpropagation, delta- bar-delta, extended delta-bar-delta, quick propagation, and Levenberg-Marquardt algorithms. The performances of the MLPNN classifiers were evaluated in terms of training performance and classification accuracies. Receiver operating characteristic (ROC) curves were used to assess the performance of the detection process. The results confirmed that the proposed MLPNN trained with the Levenberg-Marquardt algorithm has potential in detecting the electrocardiographic changes in patients with partial epilepsy. (C) 2004 Elsevier Ltd. All rights reserved.
ISSN: 0952-1976
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 24, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.