Please use this identifier to cite or link to this item:
Title: Fuzzy functions with LSE
Authors: Türkşen, İsmail Burhan
Keywords: fuzzy functions
rule bases
membership values
input-output variables
scalar and non-scalar
least squares
Issue Date: 2008
Publisher: Elsevier
Source: BISC International Special Event on Forging the Frontiers (BISCSE'05) -- NOV 03-06, 2005 -- Univ Calif Berkeley, Berkeley, CA
Abstract: "Fuzzy Functions'' are proposed to be determined by the least squares estimation (LSE) technique for the development of fuzzy system models. These functions, "Fuzzy Functions with LSE'' are proposed as alternate representation and reasoning schemas to the fuzzy rule base approaches. These "Fuzzy Functions'' can be more easily obtained and implemented by those who are not familiar with an in-depth knowledge of fuzzy theory. Working knowledge of a fuzzy clustering algorithm such as FCM or its variations would be sufficient to obtain membership values of input vectors. The membership values together with scalar input variables are then used by the LSE technique to determine "Fuzzy Functions'' for each cluster identified by FCM. These functions are different from "Fuzzy Rule Base'' approaches as well as "Fuzzy Regression'' approaches. Various transformations of the membership values are included as new variables in addition to original selected scalar input variables; and at times, a logistic transformation of non-scalar original selected input variables may also be included as a new variable. A comparison of "Fuzzy Functions-LSE'' with Ordinary Least Squares Estimation (OLSE)'' approach show that "Fuzzy Function-LSE'' provide better results in the order of 10% or better with respect to RMSE measure for both training and test cases of data sets. (C) 2008 Elsevier B.V. All rights reserved.
ISSN: 1568-4946
Appears in Collections:Endüstri Mühendisliği Bölümü / Department of Industrial Engineering
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Sep 24, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.