Please use this identifier to cite or link to this item:
Title: Implementing wavelet transform/mixture of experts network for analysis of electrocardiogram beats
Authors: Übeyli, Elif Derya
Keywords: mixture of experts
expectation maximization algorithm
classification accuracy
discrete wavelet transform
ECG beats classification
Issue Date: 2008
Publisher: Wiley
Abstract: Mixture of experts (ME) is a modular neural network architecture for supervised learning. This paper illustrates the use of the ME network structure to guide model selection for classification of electrocardiogram (ECG) beats. The expectation maximization algorithm is used for training the ME so that the learning process is decoupled in a manner that fits well with the modular structure. The ECG signals were decomposed into time-frequency representations using discrete wavelet transforms and statistical features were calculated to depict their distribution. The ME network structure was implemented for ECG beats classification using the statistical features as inputs. To improve classification accuracy, the outputs of expert networks were combined by a gating network simultaneously trained in order to stochastically select the expert that is performing the best at solving the problem. Five types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, atrial fibrillation beat, partial epilepsy beat) obtained from the Physiobank database were classified with an accuracy of 96.89% by the ME network structure. The ME network structure achieved accuracy rates which were higher than those of the stand-alone neural network models.
ISSN: 0266-4720
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Sep 24, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.