Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11851/6957
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lezki, Hazal | - |
dc.contributor.author | Öztürk, I. Ahu | - |
dc.contributor.author | Akpınar, M. Akif | - |
dc.contributor.author | Yücel, M. Kerim | - |
dc.contributor.author | Logoğlu, K. Berker | - |
dc.contributor.author | Erdem, Aykut | - |
dc.contributor.author | Erdem, Erkut | - |
dc.date.accessioned | 2021-09-11T15:44:31Z | - |
dc.date.available | 2021-09-11T15:44:31Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.citation | 15th European Conference on Computer Vision (ECCV) -- SEP 08-14, 2018 -- Munich, GERMANY | en_US |
dc.identifier.isbn | 978-3-030-11012-3; 978-3-030-11011-6 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-11012-3_8 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11851/6957 | - |
dc.description.abstract | Moving object detection is an imperative task in computer vision, where it is primarily used for surveillance applications. With the increasing availability of low-altitude aerial vehicles, new challenges for moving object detection have surfaced, both for academia and industry. In this paper, we propose a new approach that can detect moving objects efficiently and handle parallax cases. By introducing sparse flow based parallax handling and downscale processing, we push the boundaries of real-time performance with 16 FPS on limited embedded resources (a five-fold improvement over existing baselines), while managing to perform comparably or even improve the state-of-the-art in two different datasets. We also present a roadmap for extending our approach to exploit multi-modal data in order to mitigate the need for parameter tuning. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer International Publishing Ag | en_US |
dc.relation.ispartof | Computer Vision - Eccv 2018 Workshops, Pt Ii | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Moving object detection | en_US |
dc.subject | Optical flow | en_US |
dc.subject | UAV | en_US |
dc.subject | Drones | en_US |
dc.subject | Embedded vision | en_US |
dc.subject | Real-time vision | en_US |
dc.title | Joint Exploitation of Features and Optical Flow for Real-Time Moving Object Detection on Drones | en_US |
dc.type | Conference Object | en_US |
dc.relation.ispartofseries | Lecture Notes in Computer Science | en_US |
dc.department | Faculties, Faculty of Engineering, Department of Electrical and Electronics Engineering | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Elektrik ve Elektronik Mühendisliği Bölümü | tr_TR |
dc.identifier.volume | 11130 | en_US |
dc.identifier.startpage | 100 | en_US |
dc.identifier.endpage | 116 | en_US |
dc.authorid | 0000-0002-6744-8614 | - |
dc.authorid | 0000-0002-6280-8422 | - |
dc.identifier.wos | WOS:000594380500008 | en_US |
dc.identifier.scopus | 2-s2.0-85061774580 | en_US |
dc.institutionauthor | Lezki, Hazal | - |
dc.identifier.doi | 10.1007/978-3-030-11012-3_8 | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.relation.conference | 15th European Conference on Computer Vision (ECCV) | en_US |
dc.identifier.scopusquality | Q2 | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.openairetype | Conference Object | - |
Appears in Collections: | Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Mar 25, 2023
WEB OF SCIENCETM
Citations
1
checked on Sep 24, 2022
Page view(s)
6
checked on Mar 27, 2023
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.