Please use this identifier to cite or link to this item:
Title: Nanostructured Multilayer Coatings for Spatial Filtering
Authors: Grineviciute, Lina
Babayiğit, Ceren
Gailevicius, Darius
Peckus, Martynas
Turduev, Mirbek
Tolenis, Tomas
Staliunas, Kestutis
Keywords: metamaterials
photonic crystals
physical vapor deposition
spatial filtering
Issue Date: 2021
Publisher: Wiley-V C H Verlag Gmbh
Abstract: Spatial filtering is an important mechanism to improve the spatial quality of laser beams. Typically, a confocal arrangement of lenses with a diaphragm in the focal plane is used for intracavity spatial filtering. Such conventional filtering requires access to the far-field domain. In microlasers, however, conventional filtering is impossible due to the lack of space in microresonators to access the far-field. Therefore, a novel concept for more compact and efficient spatial filtering is necessary. In this study, a conceptually novel mechanism of spatial filtering in the near-field domain is proposed and demonstrated, by a nanostructured multilayer coating-a 2D photonic crystal structure with a periodic index modulation along the longitudinal and transverse directions to the beam propagation. The structure is built on a nanomodulated substrate, to provide the transverse periodicity. The physical vapor deposition is used to provide self-repeating modulation in the longitudinal direction. A 5 mu m thick photonic multilayer structure composed of nanostructured multiple layers of alternating high- and low-index materials providing spatial filtering in the near-infrared frequencies with 2 degrees low angle passband is experimentally demonstrated. The proposed photonic structure can be considered as an ideal component for intracavity spatial filtering in microlasers.
ISSN: 2195-1071
Appears in Collections:Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender


checked on Sep 23, 2022


checked on Sep 24, 2022

Page view(s)

checked on Dec 26, 2022

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.