Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCohen, Kelly-
dc.contributor.authorSiegel, Stefan-
dc.contributor.authorSeidel, Juergen-
dc.contributor.authorAradağ, Selin-
dc.contributor.authorMcLaughlin, Thomas-
dc.date.accessioned2021-09-11T15:55:47Z-
dc.date.available2021-09-11T15:55:47Z-
dc.date.issued2012en_US
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2011.07.135-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7143-
dc.description.abstractFeedback flow control of the wake of a circular cylinder at a Reynolds number of 100 is an interesting and challenging benchmark for controlling absolute instabilities associated with bluff body wakes. A two dimensional computational fluid dynamics simulation is used to develop low-dimensional models for estimator design. Actuation is implemented as displacement of the cylinder normal to the flow. The estimation approach uses a low dimensional model based on a truncated 6 mode Double Proper Orthogonal Decomposition (DPOD) applied to the streamwise velocity component of the flow field. Sensor placement is based on the intensity of the resulting spatial modes. A non-linear Artificial Neural Network Estimator (ANNE) was employed to map the velocity data to the mode amplitudes of the DPOD model. For a given four sensor configuration, developed using a previously validated strategy, ANNE performed better than two state-of-the-art approaches, namely, a Quadratic Stochastic Estimator (QSE) and a Linear Stochastic Estimator with time delays (DSE). (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipAFOSRUnited States Department of DefenseAir Force Office of Scientific Research (AFOSR); AFRLUnited States Department of DefenseUS Air Force Research Laboratoryen_US
dc.description.sponsorshipThe authors thank Lt. Col. Scott Wells, Lt. Col. Sharon Heise (AFOSR), and Dr. James Myatt (AFRL) for their support and assistance. The authors acknowledge the assistance of Dr. Jim Forsythe of Cobalt Solutions, LLC and Dr. Young Sug-Shin of Agency for Defense Development (ADD), South Korea.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTurbulent cylinder wakeen_US
dc.subjectANNEen_US
dc.subjectLow dimensional modelingen_US
dc.subjectDPODen_US
dc.subjectFlow controlen_US
dc.titleNonlinear estimation of transient flow field low dimensional states using artificial neural netsen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume39en_US
dc.identifier.issue1en_US
dc.identifier.startpage1264en_US
dc.identifier.endpage1272en_US
dc.authorid0000-0002-8655-1465-
dc.authorid0000-0002-2034-0008-
dc.identifier.wosWOS:000296214900132en_US
dc.identifier.scopus2-s2.0-81855208944en_US
dc.institutionauthorAradağ, Selin-
dc.identifier.doi10.1016/j.eswa.2011.07.135-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Apr 13, 2024

WEB OF SCIENCETM
Citations

9
checked on Apr 13, 2024

Page view(s)

18
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.