Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11851/7299
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKahya, Müge-
dc.contributor.authorÖzbayoğlu, Murat-
dc.contributor.authorÜnver, Hakkı Özgür-
dc.date.accessioned2021-09-11T15:56:19Z-
dc.date.available2021-09-11T15:56:19Z-
dc.date.issued2021en_US
dc.identifier.issn0951-192X-
dc.identifier.issn1362-3052-
dc.identifier.urihttps://doi.org/10.1080/0951192X.2020.1858504-
dc.identifier.urihttps://hdl.handle.net/20.500.11851/7299-
dc.description.abstractTi6Al4V is extensively employed in the aviation, biomedical, and energy industries due to its high strength at elevated temperatures, low thermal conductivity, and high corrosion/creep resistance. However, these intrinsic properties have brought many technical challenges during the machining process of turbine blade shape. However, the recent advancements in flexible and precision machining in the state-of-the-art turn-mill machine tools can enable the manufacturing of high-quality turbine blades. In this study, a methodology is developed for the precision and energy-efficient machining of Ti6Al4V turbine blades on turn-mill machine tools. The stock-to-part manufacturing procedure includes the initial turning operation on bar stock, rough flank milling, and final surface finish milling. The developed method encompasses five stages. Utilizing a reconfigured Particle Swarm Optimization algorithm, a 3D Pareto optimal solution set is generated to evaluate trade-offs between surface roughness, specific cutting energy, and material removal rate. Also, the effect of different inclination angles is analyzed, and the optimization method is repeated with varying lead and tilt angles. This work shows that the surface roughness can be effectively reduced by including inclination angles into optimization while improving the machining process's energy efficiency.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofInternational Journal of Computer Integrated Manufacturingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTurbine blade machiningen_US
dc.subjectTi6Al4Ven_US
dc.subjectturn-mill machine toolsen_US
dc.subjectmulti-objective particle swarm optimizationen_US
dc.subjectenergy efficiencyen_US
dc.titlePrecision and energy-efficient ball-end milling of Ti6Al4V turbine blades using particle swarm optimizationen_US
dc.typeArticleen_US
dc.departmentFaculties, Faculty of Engineering, Department of Mechanical Engineeringen_US
dc.departmentFakülteler, Mühendislik Fakültesi, Makine Mühendisliği Bölümütr_TR
dc.identifier.volume34en_US
dc.identifier.issue2en_US
dc.identifier.startpage110en_US
dc.identifier.endpage133en_US
dc.authorid0000-0001-7998-5735-
dc.identifier.wosWOS:000605433000001en_US
dc.identifier.scopus2-s2.0-85099253914en_US
dc.institutionauthorÖzbayoğlu, Ahmet Murat-
dc.institutionauthorÜnver, Hakkı Özgür-
dc.identifier.doi10.1080/0951192X.2020.1858504-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.dept02.1. Department of Artificial Intelligence Engineering-
crisitem.author.dept02.7. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü / Department of Mechanical Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

11
checked on Mar 9, 2024

Page view(s)

106
checked on Mar 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.