Please use this identifier to cite or link to this item:
Title: The Impact of Base Station Mobility Patterns on Wireless Sensor Network Lifetime
Authors: Çayırpınar, Ömer
Ürtiş, Esra Kadıoğlu
Tavlı, Bülent
Keywords: wireless sensor networks
sink mobility
mobility patterns
optimal sink location
mobile robotics
mixed integer programming
energy efficiency
Issue Date: 2013
Publisher: IEEE
Source: IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) -- SEP 08-11, 2013 -- London, ENGLAND
Abstract: Maximization of network lifetime is one of the most important design goals in Wireless Sensor Networks (WSNs). In WSNs with static base stations, sensor nodes close to the base station dissipate most of their energies for relaying other sensor nodes' data. Although cooperation among the sensor nodes results in longer network lifetimes in comparison to greedy approaches, there is an inherent limit on the achievable network lifetime due to the limited energy of the sensor nodes in close proximity of the base station acting as relays. Base station mobility is proposed as a remedy for the WSN hot spot problem. As the base station relocates, the burden of relaying the data coming from all sensor nodes can be shared by a larger set of nodes. To take advantage of base station mobility to maximize the network lifetime, determining the optimal mobility pattern is of utmost importance. In this study, we investigate the impact of using three base station mobility patterns which are random mobility, grid mobility, and spiral mobility. To avoid the shadowing effects of specific protocols or algorithms we build a novel Mixed Integer Programming (MIP) framework which enables us to explore the design space under optimal operating conditions.
Appears in Collections:Bilgisayar Mühendisliği Bölümü / Department of Computer Engineering
Elektrik ve Elektronik Mühendisliği Bölümü / Department of Electrical & Electronics Engineering
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record

CORE Recommender

Page view(s)

checked on Dec 26, 2022

Google ScholarTM


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.